Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2p2e4 | GIF version |
Description: Two plus two equals four. For more information, see "2+2=4 Trivia" on the Metamath Proof Explorer Home Page: https://us.metamath.org/mpeuni/mmset.html#trivia. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
2p2e4 | ⊢ (2 + 2) = 4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 8886 | . . 3 ⊢ 2 = (1 + 1) | |
2 | 1 | oveq2i 5832 | . 2 ⊢ (2 + 2) = (2 + (1 + 1)) |
3 | df-4 8888 | . . 3 ⊢ 4 = (3 + 1) | |
4 | df-3 8887 | . . . 4 ⊢ 3 = (2 + 1) | |
5 | 4 | oveq1i 5831 | . . 3 ⊢ (3 + 1) = ((2 + 1) + 1) |
6 | 2cn 8898 | . . . 4 ⊢ 2 ∈ ℂ | |
7 | ax-1cn 7819 | . . . 4 ⊢ 1 ∈ ℂ | |
8 | 6, 7, 7 | addassi 7880 | . . 3 ⊢ ((2 + 1) + 1) = (2 + (1 + 1)) |
9 | 3, 5, 8 | 3eqtri 2182 | . 2 ⊢ 4 = (2 + (1 + 1)) |
10 | 2, 9 | eqtr4i 2181 | 1 ⊢ (2 + 2) = 4 |
Colors of variables: wff set class |
Syntax hints: = wceq 1335 (class class class)co 5821 1c1 7727 + caddc 7729 2c2 8878 3c3 8879 4c4 8880 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 ax-resscn 7818 ax-1cn 7819 ax-1re 7820 ax-addrcl 7823 ax-addass 7828 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-rex 2441 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-iota 5134 df-fv 5177 df-ov 5824 df-2 8886 df-3 8887 df-4 8888 |
This theorem is referenced by: 2t2e4 8981 i4 10514 4bc2eq6 10641 resqrexlemover 10903 resqrexlemcalc1 10907 ef01bndlem 11646 6gcd4e2 11870 |
Copyright terms: Public domain | W3C validator |