![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2p2e4 | GIF version |
Description: Two plus two equals four. For more information, see "2+2=4 Trivia" on the Metamath Proof Explorer Home Page: https://us.metamath.org/mpeuni/mmset.html#trivia. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
2p2e4 | ⊢ (2 + 2) = 4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 8980 | . . 3 ⊢ 2 = (1 + 1) | |
2 | 1 | oveq2i 5888 | . 2 ⊢ (2 + 2) = (2 + (1 + 1)) |
3 | df-4 8982 | . . 3 ⊢ 4 = (3 + 1) | |
4 | df-3 8981 | . . . 4 ⊢ 3 = (2 + 1) | |
5 | 4 | oveq1i 5887 | . . 3 ⊢ (3 + 1) = ((2 + 1) + 1) |
6 | 2cn 8992 | . . . 4 ⊢ 2 ∈ ℂ | |
7 | ax-1cn 7906 | . . . 4 ⊢ 1 ∈ ℂ | |
8 | 6, 7, 7 | addassi 7967 | . . 3 ⊢ ((2 + 1) + 1) = (2 + (1 + 1)) |
9 | 3, 5, 8 | 3eqtri 2202 | . 2 ⊢ 4 = (2 + (1 + 1)) |
10 | 2, 9 | eqtr4i 2201 | 1 ⊢ (2 + 2) = 4 |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 (class class class)co 5877 1c1 7814 + caddc 7816 2c2 8972 3c3 8973 4c4 8974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-addrcl 7910 ax-addass 7915 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-iota 5180 df-fv 5226 df-ov 5880 df-2 8980 df-3 8981 df-4 8982 |
This theorem is referenced by: 2t2e4 9075 i4 10625 4bc2eq6 10756 resqrexlemover 11021 resqrexlemcalc1 11025 ef01bndlem 11766 6gcd4e2 11998 pythagtriplem1 12267 |
Copyright terms: Public domain | W3C validator |