Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2p2e4 | GIF version |
Description: Two plus two equals four. For more information, see "2+2=4 Trivia" on the Metamath Proof Explorer Home Page: https://us.metamath.org/mpeuni/mmset.html#trivia. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
2p2e4 | ⊢ (2 + 2) = 4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 8912 | . . 3 ⊢ 2 = (1 + 1) | |
2 | 1 | oveq2i 5852 | . 2 ⊢ (2 + 2) = (2 + (1 + 1)) |
3 | df-4 8914 | . . 3 ⊢ 4 = (3 + 1) | |
4 | df-3 8913 | . . . 4 ⊢ 3 = (2 + 1) | |
5 | 4 | oveq1i 5851 | . . 3 ⊢ (3 + 1) = ((2 + 1) + 1) |
6 | 2cn 8924 | . . . 4 ⊢ 2 ∈ ℂ | |
7 | ax-1cn 7842 | . . . 4 ⊢ 1 ∈ ℂ | |
8 | 6, 7, 7 | addassi 7903 | . . 3 ⊢ ((2 + 1) + 1) = (2 + (1 + 1)) |
9 | 3, 5, 8 | 3eqtri 2190 | . 2 ⊢ 4 = (2 + (1 + 1)) |
10 | 2, 9 | eqtr4i 2189 | 1 ⊢ (2 + 2) = 4 |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 (class class class)co 5841 1c1 7750 + caddc 7752 2c2 8904 3c3 8905 4c4 8906 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-addrcl 7846 ax-addass 7851 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-rex 2449 df-v 2727 df-un 3119 df-in 3121 df-ss 3128 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-iota 5152 df-fv 5195 df-ov 5844 df-2 8912 df-3 8913 df-4 8914 |
This theorem is referenced by: 2t2e4 9007 i4 10553 4bc2eq6 10683 resqrexlemover 10948 resqrexlemcalc1 10952 ef01bndlem 11693 6gcd4e2 11924 pythagtriplem1 12193 |
Copyright terms: Public domain | W3C validator |