| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2p2e4 | GIF version | ||
| Description: Two plus two equals four. For more information, see "2+2=4 Trivia" on the Metamath Proof Explorer Home Page: https://us.metamath.org/mpeuni/mmset.html#trivia. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 2p2e4 | ⊢ (2 + 2) = 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 9165 | . . 3 ⊢ 2 = (1 + 1) | |
| 2 | 1 | oveq2i 6011 | . 2 ⊢ (2 + 2) = (2 + (1 + 1)) |
| 3 | df-4 9167 | . . 3 ⊢ 4 = (3 + 1) | |
| 4 | df-3 9166 | . . . 4 ⊢ 3 = (2 + 1) | |
| 5 | 4 | oveq1i 6010 | . . 3 ⊢ (3 + 1) = ((2 + 1) + 1) |
| 6 | 2cn 9177 | . . . 4 ⊢ 2 ∈ ℂ | |
| 7 | ax-1cn 8088 | . . . 4 ⊢ 1 ∈ ℂ | |
| 8 | 6, 7, 7 | addassi 8150 | . . 3 ⊢ ((2 + 1) + 1) = (2 + (1 + 1)) |
| 9 | 3, 5, 8 | 3eqtri 2254 | . 2 ⊢ 4 = (2 + (1 + 1)) |
| 10 | 2, 9 | eqtr4i 2253 | 1 ⊢ (2 + 2) = 4 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 (class class class)co 6000 1c1 7996 + caddc 7998 2c2 9157 3c3 9158 4c4 9159 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-addrcl 8092 ax-addass 8097 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-iota 5277 df-fv 5325 df-ov 6003 df-2 9165 df-3 9166 df-4 9167 |
| This theorem is referenced by: 2t2e4 9261 i4 10859 4bc2eq6 10991 resqrexlemover 11516 resqrexlemcalc1 11520 ef01bndlem 12262 6gcd4e2 12511 pythagtriplem1 12783 |
| Copyright terms: Public domain | W3C validator |