ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2p2e4 GIF version

Theorem 2p2e4 9111
Description: Two plus two equals four. For more information, see "2+2=4 Trivia" on the Metamath Proof Explorer Home Page: https://us.metamath.org/mpeuni/mmset.html#trivia. (Contributed by NM, 27-May-1999.)
Assertion
Ref Expression
2p2e4 (2 + 2) = 4

Proof of Theorem 2p2e4
StepHypRef Expression
1 df-2 9043 . . 3 2 = (1 + 1)
21oveq2i 5930 . 2 (2 + 2) = (2 + (1 + 1))
3 df-4 9045 . . 3 4 = (3 + 1)
4 df-3 9044 . . . 4 3 = (2 + 1)
54oveq1i 5929 . . 3 (3 + 1) = ((2 + 1) + 1)
6 2cn 9055 . . . 4 2 ∈ ℂ
7 ax-1cn 7967 . . . 4 1 ∈ ℂ
86, 7, 7addassi 8029 . . 3 ((2 + 1) + 1) = (2 + (1 + 1))
93, 5, 83eqtri 2218 . 2 4 = (2 + (1 + 1))
102, 9eqtr4i 2217 1 (2 + 2) = 4
Colors of variables: wff set class
Syntax hints:   = wceq 1364  (class class class)co 5919  1c1 7875   + caddc 7877  2c2 9035  3c3 9036  4c4 9037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-addrcl 7971  ax-addass 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-iota 5216  df-fv 5263  df-ov 5922  df-2 9043  df-3 9044  df-4 9045
This theorem is referenced by:  2t2e4  9139  i4  10716  4bc2eq6  10848  resqrexlemover  11157  resqrexlemcalc1  11161  ef01bndlem  11902  6gcd4e2  12135  pythagtriplem1  12406
  Copyright terms: Public domain W3C validator