Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2p2e4 | GIF version |
Description: Two plus two equals four. For more information, see "2+2=4 Trivia" on the Metamath Proof Explorer Home Page: https://us.metamath.org/mpeuni/mmset.html#trivia. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
2p2e4 | ⊢ (2 + 2) = 4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 8937 | . . 3 ⊢ 2 = (1 + 1) | |
2 | 1 | oveq2i 5864 | . 2 ⊢ (2 + 2) = (2 + (1 + 1)) |
3 | df-4 8939 | . . 3 ⊢ 4 = (3 + 1) | |
4 | df-3 8938 | . . . 4 ⊢ 3 = (2 + 1) | |
5 | 4 | oveq1i 5863 | . . 3 ⊢ (3 + 1) = ((2 + 1) + 1) |
6 | 2cn 8949 | . . . 4 ⊢ 2 ∈ ℂ | |
7 | ax-1cn 7867 | . . . 4 ⊢ 1 ∈ ℂ | |
8 | 6, 7, 7 | addassi 7928 | . . 3 ⊢ ((2 + 1) + 1) = (2 + (1 + 1)) |
9 | 3, 5, 8 | 3eqtri 2195 | . 2 ⊢ 4 = (2 + (1 + 1)) |
10 | 2, 9 | eqtr4i 2194 | 1 ⊢ (2 + 2) = 4 |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 (class class class)co 5853 1c1 7775 + caddc 7777 2c2 8929 3c3 8930 4c4 8931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-addrcl 7871 ax-addass 7876 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-iota 5160 df-fv 5206 df-ov 5856 df-2 8937 df-3 8938 df-4 8939 |
This theorem is referenced by: 2t2e4 9032 i4 10578 4bc2eq6 10708 resqrexlemover 10974 resqrexlemcalc1 10978 ef01bndlem 11719 6gcd4e2 11950 pythagtriplem1 12219 |
Copyright terms: Public domain | W3C validator |