ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2p2e4 GIF version

Theorem 2p2e4 9233
Description: Two plus two equals four. For more information, see "2+2=4 Trivia" on the Metamath Proof Explorer Home Page: https://us.metamath.org/mpeuni/mmset.html#trivia. (Contributed by NM, 27-May-1999.)
Assertion
Ref Expression
2p2e4 (2 + 2) = 4

Proof of Theorem 2p2e4
StepHypRef Expression
1 df-2 9165 . . 3 2 = (1 + 1)
21oveq2i 6011 . 2 (2 + 2) = (2 + (1 + 1))
3 df-4 9167 . . 3 4 = (3 + 1)
4 df-3 9166 . . . 4 3 = (2 + 1)
54oveq1i 6010 . . 3 (3 + 1) = ((2 + 1) + 1)
6 2cn 9177 . . . 4 2 ∈ ℂ
7 ax-1cn 8088 . . . 4 1 ∈ ℂ
86, 7, 7addassi 8150 . . 3 ((2 + 1) + 1) = (2 + (1 + 1))
93, 5, 83eqtri 2254 . 2 4 = (2 + (1 + 1))
102, 9eqtr4i 2253 1 (2 + 2) = 4
Colors of variables: wff set class
Syntax hints:   = wceq 1395  (class class class)co 6000  1c1 7996   + caddc 7998  2c2 9157  3c3 9158  4c4 9159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-addrcl 8092  ax-addass 8097
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-iota 5277  df-fv 5325  df-ov 6003  df-2 9165  df-3 9166  df-4 9167
This theorem is referenced by:  2t2e4  9261  i4  10859  4bc2eq6  10991  resqrexlemover  11516  resqrexlemcalc1  11520  ef01bndlem  12262  6gcd4e2  12511  pythagtriplem1  12783
  Copyright terms: Public domain W3C validator