ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2p2e4 GIF version

Theorem 2p2e4 8954
Description: Two plus two equals four. For more information, see "2+2=4 Trivia" on the Metamath Proof Explorer Home Page: https://us.metamath.org/mpeuni/mmset.html#trivia. (Contributed by NM, 27-May-1999.)
Assertion
Ref Expression
2p2e4 (2 + 2) = 4

Proof of Theorem 2p2e4
StepHypRef Expression
1 df-2 8886 . . 3 2 = (1 + 1)
21oveq2i 5832 . 2 (2 + 2) = (2 + (1 + 1))
3 df-4 8888 . . 3 4 = (3 + 1)
4 df-3 8887 . . . 4 3 = (2 + 1)
54oveq1i 5831 . . 3 (3 + 1) = ((2 + 1) + 1)
6 2cn 8898 . . . 4 2 ∈ ℂ
7 ax-1cn 7819 . . . 4 1 ∈ ℂ
86, 7, 7addassi 7880 . . 3 ((2 + 1) + 1) = (2 + (1 + 1))
93, 5, 83eqtri 2182 . 2 4 = (2 + (1 + 1))
102, 9eqtr4i 2181 1 (2 + 2) = 4
Colors of variables: wff set class
Syntax hints:   = wceq 1335  (class class class)co 5821  1c1 7727   + caddc 7729  2c2 8878  3c3 8879  4c4 8880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139  ax-resscn 7818  ax-1cn 7819  ax-1re 7820  ax-addrcl 7823  ax-addass 7828
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-rex 2441  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-iota 5134  df-fv 5177  df-ov 5824  df-2 8886  df-3 8887  df-4 8888
This theorem is referenced by:  2t2e4  8981  i4  10514  4bc2eq6  10641  resqrexlemover  10903  resqrexlemcalc1  10907  ef01bndlem  11646  6gcd4e2  11870
  Copyright terms: Public domain W3C validator