ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2p2e4 GIF version

Theorem 2p2e4 9134
Description: Two plus two equals four. For more information, see "2+2=4 Trivia" on the Metamath Proof Explorer Home Page: https://us.metamath.org/mpeuni/mmset.html#trivia. (Contributed by NM, 27-May-1999.)
Assertion
Ref Expression
2p2e4 (2 + 2) = 4

Proof of Theorem 2p2e4
StepHypRef Expression
1 df-2 9066 . . 3 2 = (1 + 1)
21oveq2i 5936 . 2 (2 + 2) = (2 + (1 + 1))
3 df-4 9068 . . 3 4 = (3 + 1)
4 df-3 9067 . . . 4 3 = (2 + 1)
54oveq1i 5935 . . 3 (3 + 1) = ((2 + 1) + 1)
6 2cn 9078 . . . 4 2 ∈ ℂ
7 ax-1cn 7989 . . . 4 1 ∈ ℂ
86, 7, 7addassi 8051 . . 3 ((2 + 1) + 1) = (2 + (1 + 1))
93, 5, 83eqtri 2221 . 2 4 = (2 + (1 + 1))
102, 9eqtr4i 2220 1 (2 + 2) = 4
Colors of variables: wff set class
Syntax hints:   = wceq 1364  (class class class)co 5925  1c1 7897   + caddc 7899  2c2 9058  3c3 9059  4c4 9060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-addrcl 7993  ax-addass 7998
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-iota 5220  df-fv 5267  df-ov 5928  df-2 9066  df-3 9067  df-4 9068
This theorem is referenced by:  2t2e4  9162  i4  10751  4bc2eq6  10883  resqrexlemover  11192  resqrexlemcalc1  11196  ef01bndlem  11938  6gcd4e2  12187  pythagtriplem1  12459
  Copyright terms: Public domain W3C validator