ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2p2e4 GIF version

Theorem 2p2e4 8980
Description: Two plus two equals four. For more information, see "2+2=4 Trivia" on the Metamath Proof Explorer Home Page: https://us.metamath.org/mpeuni/mmset.html#trivia. (Contributed by NM, 27-May-1999.)
Assertion
Ref Expression
2p2e4 (2 + 2) = 4

Proof of Theorem 2p2e4
StepHypRef Expression
1 df-2 8912 . . 3 2 = (1 + 1)
21oveq2i 5852 . 2 (2 + 2) = (2 + (1 + 1))
3 df-4 8914 . . 3 4 = (3 + 1)
4 df-3 8913 . . . 4 3 = (2 + 1)
54oveq1i 5851 . . 3 (3 + 1) = ((2 + 1) + 1)
6 2cn 8924 . . . 4 2 ∈ ℂ
7 ax-1cn 7842 . . . 4 1 ∈ ℂ
86, 7, 7addassi 7903 . . 3 ((2 + 1) + 1) = (2 + (1 + 1))
93, 5, 83eqtri 2190 . 2 4 = (2 + (1 + 1))
102, 9eqtr4i 2189 1 (2 + 2) = 4
Colors of variables: wff set class
Syntax hints:   = wceq 1343  (class class class)co 5841  1c1 7750   + caddc 7752  2c2 8904  3c3 8905  4c4 8906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-addrcl 7846  ax-addass 7851
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-rex 2449  df-v 2727  df-un 3119  df-in 3121  df-ss 3128  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-br 3982  df-iota 5152  df-fv 5195  df-ov 5844  df-2 8912  df-3 8913  df-4 8914
This theorem is referenced by:  2t2e4  9007  i4  10553  4bc2eq6  10683  resqrexlemover  10948  resqrexlemcalc1  10952  ef01bndlem  11693  6gcd4e2  11924  pythagtriplem1  12193
  Copyright terms: Public domain W3C validator