ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  6p3e9 GIF version

Theorem 6p3e9 9257
Description: 6 + 3 = 9. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
6p3e9 (6 + 3) = 9

Proof of Theorem 6p3e9
StepHypRef Expression
1 df-3 9166 . . . 4 3 = (2 + 1)
21oveq2i 6011 . . 3 (6 + 3) = (6 + (2 + 1))
3 6cn 9188 . . . 4 6 ∈ ℂ
4 2cn 9177 . . . 4 2 ∈ ℂ
5 ax-1cn 8088 . . . 4 1 ∈ ℂ
63, 4, 5addassi 8150 . . 3 ((6 + 2) + 1) = (6 + (2 + 1))
72, 6eqtr4i 2253 . 2 (6 + 3) = ((6 + 2) + 1)
8 df-9 9172 . . 3 9 = (8 + 1)
9 6p2e8 9256 . . . 4 (6 + 2) = 8
109oveq1i 6010 . . 3 ((6 + 2) + 1) = (8 + 1)
118, 10eqtr4i 2253 . 2 9 = ((6 + 2) + 1)
127, 11eqtr4i 2253 1 (6 + 3) = 9
Colors of variables: wff set class
Syntax hints:   = wceq 1395  (class class class)co 6000  1c1 7996   + caddc 7998  2c2 9157  3c3 9158  6c6 9161  8c8 9163  9c9 9164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-addrcl 8092  ax-addass 8097
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-iota 5277  df-fv 5325  df-ov 6003  df-2 9165  df-3 9166  df-4 9167  df-5 9168  df-6 9169  df-7 9170  df-8 9171  df-9 9172
This theorem is referenced by:  3t3e9  9264  6p4e10  9645  2exp8  12953  ex-gcd  16053
  Copyright terms: Public domain W3C validator