ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  6p3e9 GIF version

Theorem 6p3e9 9169
Description: 6 + 3 = 9. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
6p3e9 (6 + 3) = 9

Proof of Theorem 6p3e9
StepHypRef Expression
1 df-3 9078 . . . 4 3 = (2 + 1)
21oveq2i 5945 . . 3 (6 + 3) = (6 + (2 + 1))
3 6cn 9100 . . . 4 6 ∈ ℂ
4 2cn 9089 . . . 4 2 ∈ ℂ
5 ax-1cn 8000 . . . 4 1 ∈ ℂ
63, 4, 5addassi 8062 . . 3 ((6 + 2) + 1) = (6 + (2 + 1))
72, 6eqtr4i 2228 . 2 (6 + 3) = ((6 + 2) + 1)
8 df-9 9084 . . 3 9 = (8 + 1)
9 6p2e8 9168 . . . 4 (6 + 2) = 8
109oveq1i 5944 . . 3 ((6 + 2) + 1) = (8 + 1)
118, 10eqtr4i 2228 . 2 9 = ((6 + 2) + 1)
127, 11eqtr4i 2228 1 (6 + 3) = 9
Colors of variables: wff set class
Syntax hints:   = wceq 1372  (class class class)co 5934  1c1 7908   + caddc 7910  2c2 9069  3c3 9070  6c6 9073  8c8 9075  9c9 9076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-addrcl 8004  ax-addass 8009
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-iota 5229  df-fv 5276  df-ov 5937  df-2 9077  df-3 9078  df-4 9079  df-5 9080  df-6 9081  df-7 9082  df-8 9083  df-9 9084
This theorem is referenced by:  3t3e9  9176  6p4e10  9557  2exp8  12677  ex-gcd  15531
  Copyright terms: Public domain W3C validator