| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4p2e6 | GIF version | ||
| Description: 4 + 2 = 6. (Contributed by NM, 11-May-2004.) |
| Ref | Expression |
|---|---|
| 4p2e6 | ⊢ (4 + 2) = 6 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 9130 | . . . . 5 ⊢ 2 = (1 + 1) | |
| 2 | 1 | oveq2i 5978 | . . . 4 ⊢ (4 + 2) = (4 + (1 + 1)) |
| 3 | 4cn 9149 | . . . . 5 ⊢ 4 ∈ ℂ | |
| 4 | ax-1cn 8053 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 5 | 3, 4, 4 | addassi 8115 | . . . 4 ⊢ ((4 + 1) + 1) = (4 + (1 + 1)) |
| 6 | 2, 5 | eqtr4i 2231 | . . 3 ⊢ (4 + 2) = ((4 + 1) + 1) |
| 7 | df-5 9133 | . . . 4 ⊢ 5 = (4 + 1) | |
| 8 | 7 | oveq1i 5977 | . . 3 ⊢ (5 + 1) = ((4 + 1) + 1) |
| 9 | 6, 8 | eqtr4i 2231 | . 2 ⊢ (4 + 2) = (5 + 1) |
| 10 | df-6 9134 | . 2 ⊢ 6 = (5 + 1) | |
| 11 | 9, 10 | eqtr4i 2231 | 1 ⊢ (4 + 2) = 6 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 (class class class)co 5967 1c1 7961 + caddc 7963 2c2 9122 4c4 9124 5c5 9125 6c6 9126 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-addrcl 8057 ax-addass 8062 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-iota 5251 df-fv 5298 df-ov 5970 df-2 9130 df-3 9131 df-4 9132 df-5 9133 df-6 9134 |
| This theorem is referenced by: 4p3e7 9216 div4p1lem1div2 9326 4t4e16 9637 6gcd4e2 12431 2exp16 12875 |
| Copyright terms: Public domain | W3C validator |