ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4p2e6 GIF version

Theorem 4p2e6 9136
Description: 4 + 2 = 6. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
4p2e6 (4 + 2) = 6

Proof of Theorem 4p2e6
StepHypRef Expression
1 df-2 9051 . . . . 5 2 = (1 + 1)
21oveq2i 5934 . . . 4 (4 + 2) = (4 + (1 + 1))
3 4cn 9070 . . . . 5 4 ∈ ℂ
4 ax-1cn 7974 . . . . 5 1 ∈ ℂ
53, 4, 4addassi 8036 . . . 4 ((4 + 1) + 1) = (4 + (1 + 1))
62, 5eqtr4i 2220 . . 3 (4 + 2) = ((4 + 1) + 1)
7 df-5 9054 . . . 4 5 = (4 + 1)
87oveq1i 5933 . . 3 (5 + 1) = ((4 + 1) + 1)
96, 8eqtr4i 2220 . 2 (4 + 2) = (5 + 1)
10 df-6 9055 . 2 6 = (5 + 1)
119, 10eqtr4i 2220 1 (4 + 2) = 6
Colors of variables: wff set class
Syntax hints:   = wceq 1364  (class class class)co 5923  1c1 7882   + caddc 7884  2c2 9043  4c4 9045  5c5 9046  6c6 9047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-resscn 7973  ax-1cn 7974  ax-1re 7975  ax-addrcl 7978  ax-addass 7983
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-iota 5220  df-fv 5267  df-ov 5926  df-2 9051  df-3 9052  df-4 9053  df-5 9054  df-6 9055
This theorem is referenced by:  4p3e7  9137  div4p1lem1div2  9247  4t4e16  9557  6gcd4e2  12172  2exp16  12616
  Copyright terms: Public domain W3C validator