Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 4p2e6 | GIF version |
Description: 4 + 2 = 6. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
4p2e6 | ⊢ (4 + 2) = 6 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 8912 | . . . . 5 ⊢ 2 = (1 + 1) | |
2 | 1 | oveq2i 5852 | . . . 4 ⊢ (4 + 2) = (4 + (1 + 1)) |
3 | 4cn 8931 | . . . . 5 ⊢ 4 ∈ ℂ | |
4 | ax-1cn 7842 | . . . . 5 ⊢ 1 ∈ ℂ | |
5 | 3, 4, 4 | addassi 7903 | . . . 4 ⊢ ((4 + 1) + 1) = (4 + (1 + 1)) |
6 | 2, 5 | eqtr4i 2189 | . . 3 ⊢ (4 + 2) = ((4 + 1) + 1) |
7 | df-5 8915 | . . . 4 ⊢ 5 = (4 + 1) | |
8 | 7 | oveq1i 5851 | . . 3 ⊢ (5 + 1) = ((4 + 1) + 1) |
9 | 6, 8 | eqtr4i 2189 | . 2 ⊢ (4 + 2) = (5 + 1) |
10 | df-6 8916 | . 2 ⊢ 6 = (5 + 1) | |
11 | 9, 10 | eqtr4i 2189 | 1 ⊢ (4 + 2) = 6 |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 (class class class)co 5841 1c1 7750 + caddc 7752 2c2 8904 4c4 8906 5c5 8907 6c6 8908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-addrcl 7846 ax-addass 7851 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-rex 2449 df-v 2727 df-un 3119 df-in 3121 df-ss 3128 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-iota 5152 df-fv 5195 df-ov 5844 df-2 8912 df-3 8913 df-4 8914 df-5 8915 df-6 8916 |
This theorem is referenced by: 4p3e7 8997 div4p1lem1div2 9106 4t4e16 9416 6gcd4e2 11924 |
Copyright terms: Public domain | W3C validator |