| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4p2e6 | GIF version | ||
| Description: 4 + 2 = 6. (Contributed by NM, 11-May-2004.) |
| Ref | Expression |
|---|---|
| 4p2e6 | ⊢ (4 + 2) = 6 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 9165 | . . . . 5 ⊢ 2 = (1 + 1) | |
| 2 | 1 | oveq2i 6011 | . . . 4 ⊢ (4 + 2) = (4 + (1 + 1)) |
| 3 | 4cn 9184 | . . . . 5 ⊢ 4 ∈ ℂ | |
| 4 | ax-1cn 8088 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 5 | 3, 4, 4 | addassi 8150 | . . . 4 ⊢ ((4 + 1) + 1) = (4 + (1 + 1)) |
| 6 | 2, 5 | eqtr4i 2253 | . . 3 ⊢ (4 + 2) = ((4 + 1) + 1) |
| 7 | df-5 9168 | . . . 4 ⊢ 5 = (4 + 1) | |
| 8 | 7 | oveq1i 6010 | . . 3 ⊢ (5 + 1) = ((4 + 1) + 1) |
| 9 | 6, 8 | eqtr4i 2253 | . 2 ⊢ (4 + 2) = (5 + 1) |
| 10 | df-6 9169 | . 2 ⊢ 6 = (5 + 1) | |
| 11 | 9, 10 | eqtr4i 2253 | 1 ⊢ (4 + 2) = 6 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 (class class class)co 6000 1c1 7996 + caddc 7998 2c2 9157 4c4 9159 5c5 9160 6c6 9161 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-addrcl 8092 ax-addass 8097 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-iota 5277 df-fv 5325 df-ov 6003 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-6 9169 |
| This theorem is referenced by: 4p3e7 9251 div4p1lem1div2 9361 4t4e16 9672 6gcd4e2 12511 2exp16 12955 |
| Copyright terms: Public domain | W3C validator |