Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 6p4e10 | GIF version |
Description: 6 + 4 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
6p4e10 | ⊢ (6 + 4) = ;10 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-4 8873 | . . . 4 ⊢ 4 = (3 + 1) | |
2 | 1 | oveq2i 5825 | . . 3 ⊢ (6 + 4) = (6 + (3 + 1)) |
3 | 6cn 8894 | . . . 4 ⊢ 6 ∈ ℂ | |
4 | 3cn 8887 | . . . 4 ⊢ 3 ∈ ℂ | |
5 | ax-1cn 7804 | . . . 4 ⊢ 1 ∈ ℂ | |
6 | 3, 4, 5 | addassi 7865 | . . 3 ⊢ ((6 + 3) + 1) = (6 + (3 + 1)) |
7 | 2, 6 | eqtr4i 2178 | . 2 ⊢ (6 + 4) = ((6 + 3) + 1) |
8 | 6p3e9 8962 | . . 3 ⊢ (6 + 3) = 9 | |
9 | 8 | oveq1i 5824 | . 2 ⊢ ((6 + 3) + 1) = (9 + 1) |
10 | 9p1e10 9276 | . 2 ⊢ (9 + 1) = ;10 | |
11 | 7, 9, 10 | 3eqtri 2179 | 1 ⊢ (6 + 4) = ;10 |
Colors of variables: wff set class |
Syntax hints: = wceq 1332 (class class class)co 5814 0cc0 7711 1c1 7712 + caddc 7714 3c3 8864 4c4 8865 6c6 8867 9c9 8870 ;cdc 9274 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 ax-sep 4078 ax-cnex 7802 ax-resscn 7803 ax-1cn 7804 ax-1re 7805 ax-icn 7806 ax-addcl 7807 ax-addrcl 7808 ax-mulcl 7809 ax-mulcom 7812 ax-addass 7813 ax-mulass 7814 ax-distr 7815 ax-1rid 7818 ax-0id 7819 ax-cnre 7822 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rex 2438 df-rab 2441 df-v 2711 df-un 3102 df-in 3104 df-ss 3111 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-int 3804 df-br 3962 df-iota 5128 df-fv 5171 df-ov 5817 df-inn 8813 df-2 8871 df-3 8872 df-4 8873 df-5 8874 df-6 8875 df-7 8876 df-8 8877 df-9 8878 df-dec 9275 |
This theorem is referenced by: 6p5e11 9346 6t5e30 9380 ex-bc 13251 |
Copyright terms: Public domain | W3C validator |