ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  6p4e10 GIF version

Theorem 6p4e10 9345
Description: 6 + 4 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.)
Assertion
Ref Expression
6p4e10 (6 + 4) = 10

Proof of Theorem 6p4e10
StepHypRef Expression
1 df-4 8873 . . . 4 4 = (3 + 1)
21oveq2i 5825 . . 3 (6 + 4) = (6 + (3 + 1))
3 6cn 8894 . . . 4 6 ∈ ℂ
4 3cn 8887 . . . 4 3 ∈ ℂ
5 ax-1cn 7804 . . . 4 1 ∈ ℂ
63, 4, 5addassi 7865 . . 3 ((6 + 3) + 1) = (6 + (3 + 1))
72, 6eqtr4i 2178 . 2 (6 + 4) = ((6 + 3) + 1)
8 6p3e9 8962 . . 3 (6 + 3) = 9
98oveq1i 5824 . 2 ((6 + 3) + 1) = (9 + 1)
10 9p1e10 9276 . 2 (9 + 1) = 10
117, 9, 103eqtri 2179 1 (6 + 4) = 10
Colors of variables: wff set class
Syntax hints:   = wceq 1332  (class class class)co 5814  0cc0 7711  1c1 7712   + caddc 7714  3c3 8864  4c4 8865  6c6 8867  9c9 8870  cdc 9274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-ext 2136  ax-sep 4078  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-mulcom 7812  ax-addass 7813  ax-mulass 7814  ax-distr 7815  ax-1rid 7818  ax-0id 7819  ax-cnre 7822
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ral 2437  df-rex 2438  df-rab 2441  df-v 2711  df-un 3102  df-in 3104  df-ss 3111  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-br 3962  df-iota 5128  df-fv 5171  df-ov 5817  df-inn 8813  df-2 8871  df-3 8872  df-4 8873  df-5 8874  df-6 8875  df-7 8876  df-8 8877  df-9 8878  df-dec 9275
This theorem is referenced by:  6p5e11  9346  6t5e30  9380  ex-bc  13251
  Copyright terms: Public domain W3C validator