| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 6p4e10 | GIF version | ||
| Description: 6 + 4 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| 6p4e10 | ⊢ (6 + 4) = ;10 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-4 9096 | . . . 4 ⊢ 4 = (3 + 1) | |
| 2 | 1 | oveq2i 5954 | . . 3 ⊢ (6 + 4) = (6 + (3 + 1)) |
| 3 | 6cn 9117 | . . . 4 ⊢ 6 ∈ ℂ | |
| 4 | 3cn 9110 | . . . 4 ⊢ 3 ∈ ℂ | |
| 5 | ax-1cn 8017 | . . . 4 ⊢ 1 ∈ ℂ | |
| 6 | 3, 4, 5 | addassi 8079 | . . 3 ⊢ ((6 + 3) + 1) = (6 + (3 + 1)) |
| 7 | 2, 6 | eqtr4i 2228 | . 2 ⊢ (6 + 4) = ((6 + 3) + 1) |
| 8 | 6p3e9 9186 | . . 3 ⊢ (6 + 3) = 9 | |
| 9 | 8 | oveq1i 5953 | . 2 ⊢ ((6 + 3) + 1) = (9 + 1) |
| 10 | 9p1e10 9505 | . 2 ⊢ (9 + 1) = ;10 | |
| 11 | 7, 9, 10 | 3eqtri 2229 | 1 ⊢ (6 + 4) = ;10 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 (class class class)co 5943 0cc0 7924 1c1 7925 + caddc 7927 3c3 9087 4c4 9088 6c6 9090 9c9 9093 ;cdc 9503 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-sep 4161 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-1rid 8031 ax-0id 8032 ax-cnre 8035 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-iota 5231 df-fv 5278 df-ov 5946 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-5 9097 df-6 9098 df-7 9099 df-8 9100 df-9 9101 df-dec 9504 |
| This theorem is referenced by: 6p5e11 9575 6t5e30 9609 2exp11 12701 ex-bc 15598 |
| Copyright terms: Public domain | W3C validator |