ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  6p4e10 GIF version

Theorem 6p4e10 9522
Description: 6 + 4 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.)
Assertion
Ref Expression
6p4e10 (6 + 4) = 10

Proof of Theorem 6p4e10
StepHypRef Expression
1 df-4 9045 . . . 4 4 = (3 + 1)
21oveq2i 5930 . . 3 (6 + 4) = (6 + (3 + 1))
3 6cn 9066 . . . 4 6 ∈ ℂ
4 3cn 9059 . . . 4 3 ∈ ℂ
5 ax-1cn 7967 . . . 4 1 ∈ ℂ
63, 4, 5addassi 8029 . . 3 ((6 + 3) + 1) = (6 + (3 + 1))
72, 6eqtr4i 2217 . 2 (6 + 4) = ((6 + 3) + 1)
8 6p3e9 9135 . . 3 (6 + 3) = 9
98oveq1i 5929 . 2 ((6 + 3) + 1) = (9 + 1)
10 9p1e10 9453 . 2 (9 + 1) = 10
117, 9, 103eqtri 2218 1 (6 + 4) = 10
Colors of variables: wff set class
Syntax hints:   = wceq 1364  (class class class)co 5919  0cc0 7874  1c1 7875   + caddc 7877  3c3 9036  4c4 9037  6c6 9039  9c9 9042  cdc 9451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-sep 4148  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-1rid 7981  ax-0id 7982  ax-cnre 7985
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-iota 5216  df-fv 5263  df-ov 5922  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-7 9048  df-8 9049  df-9 9050  df-dec 9452
This theorem is referenced by:  6p5e11  9523  6t5e30  9557  ex-bc  15291
  Copyright terms: Public domain W3C validator