Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 6p4e10 | GIF version |
Description: 6 + 4 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
6p4e10 | ⊢ (6 + 4) = ;10 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-4 8918 | . . . 4 ⊢ 4 = (3 + 1) | |
2 | 1 | oveq2i 5853 | . . 3 ⊢ (6 + 4) = (6 + (3 + 1)) |
3 | 6cn 8939 | . . . 4 ⊢ 6 ∈ ℂ | |
4 | 3cn 8932 | . . . 4 ⊢ 3 ∈ ℂ | |
5 | ax-1cn 7846 | . . . 4 ⊢ 1 ∈ ℂ | |
6 | 3, 4, 5 | addassi 7907 | . . 3 ⊢ ((6 + 3) + 1) = (6 + (3 + 1)) |
7 | 2, 6 | eqtr4i 2189 | . 2 ⊢ (6 + 4) = ((6 + 3) + 1) |
8 | 6p3e9 9007 | . . 3 ⊢ (6 + 3) = 9 | |
9 | 8 | oveq1i 5852 | . 2 ⊢ ((6 + 3) + 1) = (9 + 1) |
10 | 9p1e10 9324 | . 2 ⊢ (9 + 1) = ;10 | |
11 | 7, 9, 10 | 3eqtri 2190 | 1 ⊢ (6 + 4) = ;10 |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 (class class class)co 5842 0cc0 7753 1c1 7754 + caddc 7756 3c3 8909 4c4 8910 6c6 8912 9c9 8915 ;cdc 9322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4100 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-1rid 7860 ax-0id 7861 ax-cnre 7864 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-5 8919 df-6 8920 df-7 8921 df-8 8922 df-9 8923 df-dec 9323 |
This theorem is referenced by: 6p5e11 9394 6t5e30 9428 ex-bc 13610 |
Copyright terms: Public domain | W3C validator |