![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 7p3e10 | GIF version |
Description: 7 + 3 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
7p3e10 | ⊢ (7 + 3) = ;10 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3 8997 | . . . 4 ⊢ 3 = (2 + 1) | |
2 | 1 | oveq2i 5902 | . . 3 ⊢ (7 + 3) = (7 + (2 + 1)) |
3 | 7cn 9021 | . . . 4 ⊢ 7 ∈ ℂ | |
4 | 2cn 9008 | . . . 4 ⊢ 2 ∈ ℂ | |
5 | ax-1cn 7922 | . . . 4 ⊢ 1 ∈ ℂ | |
6 | 3, 4, 5 | addassi 7983 | . . 3 ⊢ ((7 + 2) + 1) = (7 + (2 + 1)) |
7 | 2, 6 | eqtr4i 2213 | . 2 ⊢ (7 + 3) = ((7 + 2) + 1) |
8 | 7p2e9 9088 | . . 3 ⊢ (7 + 2) = 9 | |
9 | 8 | oveq1i 5901 | . 2 ⊢ ((7 + 2) + 1) = (9 + 1) |
10 | 9p1e10 9404 | . 2 ⊢ (9 + 1) = ;10 | |
11 | 7, 9, 10 | 3eqtri 2214 | 1 ⊢ (7 + 3) = ;10 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 (class class class)co 5891 0cc0 7829 1c1 7830 + caddc 7832 2c2 8988 3c3 8989 7c7 8993 9c9 8995 ;cdc 9402 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 ax-sep 4136 ax-cnex 7920 ax-resscn 7921 ax-1cn 7922 ax-1re 7923 ax-icn 7924 ax-addcl 7925 ax-addrcl 7926 ax-mulcl 7927 ax-mulcom 7930 ax-addass 7931 ax-mulass 7932 ax-distr 7933 ax-1rid 7936 ax-0id 7937 ax-cnre 7940 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-rab 2477 df-v 2754 df-un 3148 df-in 3150 df-ss 3157 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-br 4019 df-iota 5193 df-fv 5239 df-ov 5894 df-inn 8938 df-2 8996 df-3 8997 df-4 8998 df-5 8999 df-6 9000 df-7 9001 df-8 9002 df-9 9003 df-dec 9403 |
This theorem is referenced by: 7p4e11 9477 |
Copyright terms: Public domain | W3C validator |