| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 7p3e10 | GIF version | ||
| Description: 7 + 3 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| 7p3e10 | ⊢ (7 + 3) = ;10 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 9131 | . . . 4 ⊢ 3 = (2 + 1) | |
| 2 | 1 | oveq2i 5978 | . . 3 ⊢ (7 + 3) = (7 + (2 + 1)) |
| 3 | 7cn 9155 | . . . 4 ⊢ 7 ∈ ℂ | |
| 4 | 2cn 9142 | . . . 4 ⊢ 2 ∈ ℂ | |
| 5 | ax-1cn 8053 | . . . 4 ⊢ 1 ∈ ℂ | |
| 6 | 3, 4, 5 | addassi 8115 | . . 3 ⊢ ((7 + 2) + 1) = (7 + (2 + 1)) |
| 7 | 2, 6 | eqtr4i 2231 | . 2 ⊢ (7 + 3) = ((7 + 2) + 1) |
| 8 | 7p2e9 9223 | . . 3 ⊢ (7 + 2) = 9 | |
| 9 | 8 | oveq1i 5977 | . 2 ⊢ ((7 + 2) + 1) = (9 + 1) |
| 10 | 9p1e10 9541 | . 2 ⊢ (9 + 1) = ;10 | |
| 11 | 7, 9, 10 | 3eqtri 2232 | 1 ⊢ (7 + 3) = ;10 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 (class class class)co 5967 0cc0 7960 1c1 7961 + caddc 7963 2c2 9122 3c3 9123 7c7 9127 9c9 9129 ;cdc 9539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-sep 4178 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-1rid 8067 ax-0id 8068 ax-cnre 8071 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-iota 5251 df-fv 5298 df-ov 5970 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-5 9133 df-6 9134 df-7 9135 df-8 9136 df-9 9137 df-dec 9540 |
| This theorem is referenced by: 7p4e11 9614 |
| Copyright terms: Public domain | W3C validator |