| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 7p3e10 | GIF version | ||
| Description: 7 + 3 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| 7p3e10 | ⊢ (7 + 3) = ;10 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 9166 | . . . 4 ⊢ 3 = (2 + 1) | |
| 2 | 1 | oveq2i 6011 | . . 3 ⊢ (7 + 3) = (7 + (2 + 1)) |
| 3 | 7cn 9190 | . . . 4 ⊢ 7 ∈ ℂ | |
| 4 | 2cn 9177 | . . . 4 ⊢ 2 ∈ ℂ | |
| 5 | ax-1cn 8088 | . . . 4 ⊢ 1 ∈ ℂ | |
| 6 | 3, 4, 5 | addassi 8150 | . . 3 ⊢ ((7 + 2) + 1) = (7 + (2 + 1)) |
| 7 | 2, 6 | eqtr4i 2253 | . 2 ⊢ (7 + 3) = ((7 + 2) + 1) |
| 8 | 7p2e9 9258 | . . 3 ⊢ (7 + 2) = 9 | |
| 9 | 8 | oveq1i 6010 | . 2 ⊢ ((7 + 2) + 1) = (9 + 1) |
| 10 | 9p1e10 9576 | . 2 ⊢ (9 + 1) = ;10 | |
| 11 | 7, 9, 10 | 3eqtri 2254 | 1 ⊢ (7 + 3) = ;10 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 (class class class)co 6000 0cc0 7995 1c1 7996 + caddc 7998 2c2 9157 3c3 9158 7c7 9162 9c9 9164 ;cdc 9574 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4201 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-1rid 8102 ax-0id 8103 ax-cnre 8106 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-iota 5277 df-fv 5325 df-ov 6003 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-6 9169 df-7 9170 df-8 9171 df-9 9172 df-dec 9575 |
| This theorem is referenced by: 7p4e11 9649 |
| Copyright terms: Public domain | W3C validator |