| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 7p3e10 | GIF version | ||
| Description: 7 + 3 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.) | 
| Ref | Expression | 
|---|---|
| 7p3e10 | ⊢ (7 + 3) = ;10 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-3 9050 | . . . 4 ⊢ 3 = (2 + 1) | |
| 2 | 1 | oveq2i 5933 | . . 3 ⊢ (7 + 3) = (7 + (2 + 1)) | 
| 3 | 7cn 9074 | . . . 4 ⊢ 7 ∈ ℂ | |
| 4 | 2cn 9061 | . . . 4 ⊢ 2 ∈ ℂ | |
| 5 | ax-1cn 7972 | . . . 4 ⊢ 1 ∈ ℂ | |
| 6 | 3, 4, 5 | addassi 8034 | . . 3 ⊢ ((7 + 2) + 1) = (7 + (2 + 1)) | 
| 7 | 2, 6 | eqtr4i 2220 | . 2 ⊢ (7 + 3) = ((7 + 2) + 1) | 
| 8 | 7p2e9 9142 | . . 3 ⊢ (7 + 2) = 9 | |
| 9 | 8 | oveq1i 5932 | . 2 ⊢ ((7 + 2) + 1) = (9 + 1) | 
| 10 | 9p1e10 9459 | . 2 ⊢ (9 + 1) = ;10 | |
| 11 | 7, 9, 10 | 3eqtri 2221 | 1 ⊢ (7 + 3) = ;10 | 
| Colors of variables: wff set class | 
| Syntax hints: = wceq 1364 (class class class)co 5922 0cc0 7879 1c1 7880 + caddc 7882 2c2 9041 3c3 9042 7c7 9046 9c9 9048 ;cdc 9457 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4151 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-1rid 7986 ax-0id 7987 ax-cnre 7990 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-7 9054 df-8 9055 df-9 9056 df-dec 9458 | 
| This theorem is referenced by: 7p4e11 9532 | 
| Copyright terms: Public domain | W3C validator |