| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfzo3 | GIF version | ||
| Description: Express membership in a half-open integer interval in terms of the "less than or equal" and "less than" predicates on integers, resp. 𝐾 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝐾, 𝐾 ∈ (𝐾..^𝑁) ↔ 𝐾 < 𝑁. (Contributed by Mario Carneiro, 29-Sep-2015.) |
| Ref | Expression |
|---|---|
| elfzo3 | ⊢ (𝐾 ∈ (𝑀..^𝑁) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ (𝐾..^𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anass 1006 | . 2 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ (𝑁 ∈ ℤ ∧ 𝐾 < 𝑁))) | |
| 2 | elfzo2 10342 | . 2 ⊢ (𝐾 ∈ (𝑀..^𝑁) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁)) | |
| 3 | eluzelz 9727 | . . . 4 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → 𝐾 ∈ ℤ) | |
| 4 | fzolb 10346 | . . . . . 6 ⊢ (𝐾 ∈ (𝐾..^𝑁) ↔ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁)) | |
| 5 | 3anass 1006 | . . . . . 6 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁) ↔ (𝐾 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝐾 < 𝑁))) | |
| 6 | 4, 5 | bitri 184 | . . . . 5 ⊢ (𝐾 ∈ (𝐾..^𝑁) ↔ (𝐾 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝐾 < 𝑁))) |
| 7 | 6 | baib 924 | . . . 4 ⊢ (𝐾 ∈ ℤ → (𝐾 ∈ (𝐾..^𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝐾 < 𝑁))) |
| 8 | 3, 7 | syl 14 | . . 3 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝐾 ∈ (𝐾..^𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝐾 < 𝑁))) |
| 9 | 8 | pm5.32i 454 | . 2 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ (𝐾..^𝑁)) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ (𝑁 ∈ ℤ ∧ 𝐾 < 𝑁))) |
| 10 | 1, 2, 9 | 3bitr4i 212 | 1 ⊢ (𝐾 ∈ (𝑀..^𝑁) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ (𝐾..^𝑁))) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∧ w3a 1002 ∈ wcel 2200 class class class wbr 4082 ‘cfv 5317 (class class class)co 6000 < clt 8177 ℤcz 9442 ℤ≥cuz 9718 ..^cfzo 10334 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-n0 9366 df-z 9443 df-uz 9719 df-fz 10201 df-fzo 10335 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |