| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xmetec | GIF version | ||
| Description: The equivalence classes under the finite separation equivalence relation are infinity balls. (Contributed by Mario Carneiro, 24-Aug-2015.) |
| Ref | Expression |
|---|---|
| xmeter.1 | ⊢ ∼ = (◡𝐷 “ ℝ) |
| Ref | Expression |
|---|---|
| xmetec | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → [𝑃] ∼ = (𝑃(ball‘𝐷)+∞)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmeter.1 | . . . . 5 ⊢ ∼ = (◡𝐷 “ ℝ) | |
| 2 | 1 | xmeterval 14982 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑃 ∼ 𝑥 ↔ (𝑃 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ))) |
| 3 | 3anass 985 | . . . . 5 ⊢ ((𝑃 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ) ↔ (𝑃 ∈ 𝑋 ∧ (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ))) | |
| 4 | 3 | baib 921 | . . . 4 ⊢ (𝑃 ∈ 𝑋 → ((𝑃 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ) ↔ (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ))) |
| 5 | 2, 4 | sylan9bb 462 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → (𝑃 ∼ 𝑥 ↔ (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ))) |
| 6 | vex 2776 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 7 | 6 | a1i 9 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑥 ∈ V) |
| 8 | elecg 6673 | . . . 4 ⊢ ((𝑥 ∈ V ∧ 𝑃 ∈ 𝑋) → (𝑥 ∈ [𝑃] ∼ ↔ 𝑃 ∼ 𝑥)) | |
| 9 | 7, 8 | sylan 283 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → (𝑥 ∈ [𝑃] ∼ ↔ 𝑃 ∼ 𝑥)) |
| 10 | xblpnf 14946 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → (𝑥 ∈ (𝑃(ball‘𝐷)+∞) ↔ (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ))) | |
| 11 | 5, 9, 10 | 3bitr4d 220 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → (𝑥 ∈ [𝑃] ∼ ↔ 𝑥 ∈ (𝑃(ball‘𝐷)+∞))) |
| 12 | 11 | eqrdv 2204 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → [𝑃] ∼ = (𝑃(ball‘𝐷)+∞)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 Vcvv 2773 class class class wbr 4051 ◡ccnv 4682 “ cima 4686 ‘cfv 5280 (class class class)co 5957 [cec 6631 ℝcr 7944 +∞cpnf 8124 ∞Metcxmet 14373 ballcbl 14375 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-mulrcl 8044 ax-addcom 8045 ax-mulcom 8046 ax-addass 8047 ax-mulass 8048 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-1rid 8052 ax-0id 8053 ax-rnegex 8054 ax-precex 8055 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-ltadd 8061 ax-pre-mulgt0 8062 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-po 4351 df-iso 4352 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-ec 6635 df-map 6750 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-2 9115 df-xadd 9915 df-psmet 14380 df-xmet 14381 df-bl 14383 |
| This theorem is referenced by: blssec 14985 blpnfctr 14986 |
| Copyright terms: Public domain | W3C validator |