ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmetec GIF version

Theorem xmetec 12643
Description: The equivalence classes under the finite separation equivalence relation are infinity balls. (Contributed by Mario Carneiro, 24-Aug-2015.)
Hypothesis
Ref Expression
xmeter.1 = (𝐷 “ ℝ)
Assertion
Ref Expression
xmetec ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → [𝑃] = (𝑃(ball‘𝐷)+∞))

Proof of Theorem xmetec
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 xmeter.1 . . . . 5 = (𝐷 “ ℝ)
21xmeterval 12641 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝑃 𝑥 ↔ (𝑃𝑋𝑥𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ)))
3 3anass 967 . . . . 5 ((𝑃𝑋𝑥𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ) ↔ (𝑃𝑋 ∧ (𝑥𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ)))
43baib 905 . . . 4 (𝑃𝑋 → ((𝑃𝑋𝑥𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ)))
52, 4sylan9bb 458 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → (𝑃 𝑥 ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ)))
6 vex 2692 . . . . 5 𝑥 ∈ V
76a1i 9 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝑥 ∈ V)
8 elecg 6474 . . . 4 ((𝑥 ∈ V ∧ 𝑃𝑋) → (𝑥 ∈ [𝑃] 𝑃 𝑥))
97, 8sylan 281 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → (𝑥 ∈ [𝑃] 𝑃 𝑥))
10 xblpnf 12605 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → (𝑥 ∈ (𝑃(ball‘𝐷)+∞) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ)))
115, 9, 103bitr4d 219 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → (𝑥 ∈ [𝑃] 𝑥 ∈ (𝑃(ball‘𝐷)+∞)))
1211eqrdv 2138 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → [𝑃] = (𝑃(ball‘𝐷)+∞))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 963   = wceq 1332  wcel 1481  Vcvv 2689   class class class wbr 3936  ccnv 4545  cima 4549  cfv 5130  (class class class)co 5781  [cec 6434  cr 7642  +∞cpnf 7820  ∞Metcxmet 12186  ballcbl 12188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4053  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459  ax-cnex 7734  ax-resscn 7735  ax-1cn 7736  ax-1re 7737  ax-icn 7738  ax-addcl 7739  ax-addrcl 7740  ax-mulcl 7741  ax-mulrcl 7742  ax-addcom 7743  ax-mulcom 7744  ax-addass 7745  ax-mulass 7746  ax-distr 7747  ax-i2m1 7748  ax-0lt1 7749  ax-1rid 7750  ax-0id 7751  ax-rnegex 7752  ax-precex 7753  ax-cnre 7754  ax-pre-ltirr 7755  ax-pre-ltwlin 7756  ax-pre-lttrn 7757  ax-pre-ltadd 7759  ax-pre-mulgt0 7760
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-if 3479  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-iun 3822  df-br 3937  df-opab 3997  df-mpt 3998  df-id 4222  df-po 4225  df-iso 4226  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-res 4558  df-ima 4559  df-iota 5095  df-fun 5132  df-fn 5133  df-f 5134  df-fv 5138  df-riota 5737  df-ov 5784  df-oprab 5785  df-mpo 5786  df-1st 6045  df-2nd 6046  df-ec 6438  df-map 6551  df-pnf 7825  df-mnf 7826  df-xr 7827  df-ltxr 7828  df-le 7829  df-sub 7958  df-neg 7959  df-2 8802  df-xadd 9589  df-psmet 12193  df-xmet 12194  df-bl 12196
This theorem is referenced by:  blssec  12644  blpnfctr  12645
  Copyright terms: Public domain W3C validator