ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmetec GIF version

Theorem xmetec 14233
Description: The equivalence classes under the finite separation equivalence relation are infinity balls. (Contributed by Mario Carneiro, 24-Aug-2015.)
Hypothesis
Ref Expression
xmeter.1 = (𝐷 “ ℝ)
Assertion
Ref Expression
xmetec ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → [𝑃] = (𝑃(ball‘𝐷)+∞))

Proof of Theorem xmetec
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 xmeter.1 . . . . 5 = (𝐷 “ ℝ)
21xmeterval 14231 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝑃 𝑥 ↔ (𝑃𝑋𝑥𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ)))
3 3anass 983 . . . . 5 ((𝑃𝑋𝑥𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ) ↔ (𝑃𝑋 ∧ (𝑥𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ)))
43baib 920 . . . 4 (𝑃𝑋 → ((𝑃𝑋𝑥𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ)))
52, 4sylan9bb 462 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → (𝑃 𝑥 ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ)))
6 vex 2752 . . . . 5 𝑥 ∈ V
76a1i 9 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝑥 ∈ V)
8 elecg 6587 . . . 4 ((𝑥 ∈ V ∧ 𝑃𝑋) → (𝑥 ∈ [𝑃] 𝑃 𝑥))
97, 8sylan 283 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → (𝑥 ∈ [𝑃] 𝑃 𝑥))
10 xblpnf 14195 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → (𝑥 ∈ (𝑃(ball‘𝐷)+∞) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ)))
115, 9, 103bitr4d 220 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → (𝑥 ∈ [𝑃] 𝑥 ∈ (𝑃(ball‘𝐷)+∞)))
1211eqrdv 2185 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → [𝑃] = (𝑃(ball‘𝐷)+∞))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 979   = wceq 1363  wcel 2158  Vcvv 2749   class class class wbr 4015  ccnv 4637  cima 4641  cfv 5228  (class class class)co 5888  [cec 6547  cr 7824  +∞cpnf 8003  ∞Metcxmet 13722  ballcbl 13724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-mulrcl 7924  ax-addcom 7925  ax-mulcom 7926  ax-addass 7927  ax-mulass 7928  ax-distr 7929  ax-i2m1 7930  ax-0lt1 7931  ax-1rid 7932  ax-0id 7933  ax-rnegex 7934  ax-precex 7935  ax-cnre 7936  ax-pre-ltirr 7937  ax-pre-ltwlin 7938  ax-pre-lttrn 7939  ax-pre-ltadd 7941  ax-pre-mulgt0 7942
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-po 4308  df-iso 4309  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6155  df-2nd 6156  df-ec 6551  df-map 6664  df-pnf 8008  df-mnf 8009  df-xr 8010  df-ltxr 8011  df-le 8012  df-sub 8144  df-neg 8145  df-2 8992  df-xadd 9787  df-psmet 13729  df-xmet 13730  df-bl 13732
This theorem is referenced by:  blssec  14234  blpnfctr  14235
  Copyright terms: Public domain W3C validator