| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xmetec | GIF version | ||
| Description: The equivalence classes under the finite separation equivalence relation are infinity balls. (Contributed by Mario Carneiro, 24-Aug-2015.) |
| Ref | Expression |
|---|---|
| xmeter.1 | ⊢ ∼ = (◡𝐷 “ ℝ) |
| Ref | Expression |
|---|---|
| xmetec | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → [𝑃] ∼ = (𝑃(ball‘𝐷)+∞)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmeter.1 | . . . . 5 ⊢ ∼ = (◡𝐷 “ ℝ) | |
| 2 | 1 | xmeterval 14825 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑃 ∼ 𝑥 ↔ (𝑃 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ))) |
| 3 | 3anass 984 | . . . . 5 ⊢ ((𝑃 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ) ↔ (𝑃 ∈ 𝑋 ∧ (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ))) | |
| 4 | 3 | baib 920 | . . . 4 ⊢ (𝑃 ∈ 𝑋 → ((𝑃 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ) ↔ (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ))) |
| 5 | 2, 4 | sylan9bb 462 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → (𝑃 ∼ 𝑥 ↔ (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ))) |
| 6 | vex 2774 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 7 | 6 | a1i 9 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑥 ∈ V) |
| 8 | elecg 6650 | . . . 4 ⊢ ((𝑥 ∈ V ∧ 𝑃 ∈ 𝑋) → (𝑥 ∈ [𝑃] ∼ ↔ 𝑃 ∼ 𝑥)) | |
| 9 | 7, 8 | sylan 283 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → (𝑥 ∈ [𝑃] ∼ ↔ 𝑃 ∼ 𝑥)) |
| 10 | xblpnf 14789 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → (𝑥 ∈ (𝑃(ball‘𝐷)+∞) ↔ (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ))) | |
| 11 | 5, 9, 10 | 3bitr4d 220 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → (𝑥 ∈ [𝑃] ∼ ↔ 𝑥 ∈ (𝑃(ball‘𝐷)+∞))) |
| 12 | 11 | eqrdv 2202 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → [𝑃] ∼ = (𝑃(ball‘𝐷)+∞)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1372 ∈ wcel 2175 Vcvv 2771 class class class wbr 4043 ◡ccnv 4672 “ cima 4676 ‘cfv 5268 (class class class)co 5934 [cec 6608 ℝcr 7906 +∞cpnf 8086 ∞Metcxmet 14216 ballcbl 14218 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-mulrcl 8006 ax-addcom 8007 ax-mulcom 8008 ax-addass 8009 ax-mulass 8010 ax-distr 8011 ax-i2m1 8012 ax-0lt1 8013 ax-1rid 8014 ax-0id 8015 ax-rnegex 8016 ax-precex 8017 ax-cnre 8018 ax-pre-ltirr 8019 ax-pre-ltwlin 8020 ax-pre-lttrn 8021 ax-pre-ltadd 8023 ax-pre-mulgt0 8024 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-po 4341 df-iso 4342 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-1st 6216 df-2nd 6217 df-ec 6612 df-map 6727 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 df-sub 8227 df-neg 8228 df-2 9077 df-xadd 9877 df-psmet 14223 df-xmet 14224 df-bl 14226 |
| This theorem is referenced by: blssec 14828 blpnfctr 14829 |
| Copyright terms: Public domain | W3C validator |