![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xmetec | GIF version |
Description: The equivalence classes under the finite separation equivalence relation are infinity balls. (Contributed by Mario Carneiro, 24-Aug-2015.) |
Ref | Expression |
---|---|
xmeter.1 | ⊢ ∼ = (◡𝐷 “ ℝ) |
Ref | Expression |
---|---|
xmetec | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → [𝑃] ∼ = (𝑃(ball‘𝐷)+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xmeter.1 | . . . . 5 ⊢ ∼ = (◡𝐷 “ ℝ) | |
2 | 1 | xmeterval 12363 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑃 ∼ 𝑥 ↔ (𝑃 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ))) |
3 | 3anass 934 | . . . . 5 ⊢ ((𝑃 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ) ↔ (𝑃 ∈ 𝑋 ∧ (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ))) | |
4 | 3 | baib 872 | . . . 4 ⊢ (𝑃 ∈ 𝑋 → ((𝑃 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ) ↔ (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ))) |
5 | 2, 4 | sylan9bb 453 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → (𝑃 ∼ 𝑥 ↔ (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ))) |
6 | vex 2644 | . . . . 5 ⊢ 𝑥 ∈ V | |
7 | 6 | a1i 9 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑥 ∈ V) |
8 | elecg 6397 | . . . 4 ⊢ ((𝑥 ∈ V ∧ 𝑃 ∈ 𝑋) → (𝑥 ∈ [𝑃] ∼ ↔ 𝑃 ∼ 𝑥)) | |
9 | 7, 8 | sylan 279 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → (𝑥 ∈ [𝑃] ∼ ↔ 𝑃 ∼ 𝑥)) |
10 | xblpnf 12327 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → (𝑥 ∈ (𝑃(ball‘𝐷)+∞) ↔ (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ))) | |
11 | 5, 9, 10 | 3bitr4d 219 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → (𝑥 ∈ [𝑃] ∼ ↔ 𝑥 ∈ (𝑃(ball‘𝐷)+∞))) |
12 | 11 | eqrdv 2098 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → [𝑃] ∼ = (𝑃(ball‘𝐷)+∞)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 930 = wceq 1299 ∈ wcel 1448 Vcvv 2641 class class class wbr 3875 ◡ccnv 4476 “ cima 4480 ‘cfv 5059 (class class class)co 5706 [cec 6357 ℝcr 7499 +∞cpnf 7669 ∞Metcxmet 11931 ballcbl 11933 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-pow 4038 ax-pr 4069 ax-un 4293 ax-setind 4390 ax-cnex 7586 ax-resscn 7587 ax-1cn 7588 ax-1re 7589 ax-icn 7590 ax-addcl 7591 ax-addrcl 7592 ax-mulcl 7593 ax-mulrcl 7594 ax-addcom 7595 ax-mulcom 7596 ax-addass 7597 ax-mulass 7598 ax-distr 7599 ax-i2m1 7600 ax-0lt1 7601 ax-1rid 7602 ax-0id 7603 ax-rnegex 7604 ax-precex 7605 ax-cnre 7606 ax-pre-ltirr 7607 ax-pre-ltwlin 7608 ax-pre-lttrn 7609 ax-pre-ltadd 7611 ax-pre-mulgt0 7612 |
This theorem depends on definitions: df-bi 116 df-dc 787 df-3or 931 df-3an 932 df-tru 1302 df-fal 1305 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ne 2268 df-nel 2363 df-ral 2380 df-rex 2381 df-reu 2382 df-rab 2384 df-v 2643 df-sbc 2863 df-csb 2956 df-dif 3023 df-un 3025 df-in 3027 df-ss 3034 df-if 3422 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-iun 3762 df-br 3876 df-opab 3930 df-mpt 3931 df-id 4153 df-po 4156 df-iso 4157 df-xp 4483 df-rel 4484 df-cnv 4485 df-co 4486 df-dm 4487 df-rn 4488 df-res 4489 df-ima 4490 df-iota 5024 df-fun 5061 df-fn 5062 df-f 5063 df-fv 5067 df-riota 5662 df-ov 5709 df-oprab 5710 df-mpo 5711 df-1st 5969 df-2nd 5970 df-ec 6361 df-map 6474 df-pnf 7674 df-mnf 7675 df-xr 7676 df-ltxr 7677 df-le 7678 df-sub 7806 df-neg 7807 df-2 8637 df-xadd 9401 df-psmet 11938 df-xmet 11939 df-bl 11941 |
This theorem is referenced by: blssec 12366 blpnfctr 12367 |
Copyright terms: Public domain | W3C validator |