Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bastop1 | GIF version |
Description: A subset of a topology is a basis for the topology iff every member of the topology is a union of members of the basis. We use the idiom "(topGen‘𝐵) = 𝐽 " to express "𝐵 is a basis for topology 𝐽 " since we do not have a separate notation for this. Definition 15.35 of [Schechter] p. 428. (Contributed by NM, 2-Feb-2008.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) |
Ref | Expression |
---|---|
bastop1 | ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽) → ((topGen‘𝐵) = 𝐽 ↔ ∀𝑥 ∈ 𝐽 ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgss 12703 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽) → (topGen‘𝐵) ⊆ (topGen‘𝐽)) | |
2 | tgtop 12708 | . . . . . 6 ⊢ (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽) | |
3 | 2 | adantr 274 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽) → (topGen‘𝐽) = 𝐽) |
4 | 1, 3 | sseqtrd 3180 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽) → (topGen‘𝐵) ⊆ 𝐽) |
5 | eqss 3157 | . . . . 5 ⊢ ((topGen‘𝐵) = 𝐽 ↔ ((topGen‘𝐵) ⊆ 𝐽 ∧ 𝐽 ⊆ (topGen‘𝐵))) | |
6 | 5 | baib 909 | . . . 4 ⊢ ((topGen‘𝐵) ⊆ 𝐽 → ((topGen‘𝐵) = 𝐽 ↔ 𝐽 ⊆ (topGen‘𝐵))) |
7 | 4, 6 | syl 14 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽) → ((topGen‘𝐵) = 𝐽 ↔ 𝐽 ⊆ (topGen‘𝐵))) |
8 | dfss3 3132 | . . 3 ⊢ (𝐽 ⊆ (topGen‘𝐵) ↔ ∀𝑥 ∈ 𝐽 𝑥 ∈ (topGen‘𝐵)) | |
9 | 7, 8 | bitrdi 195 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽) → ((topGen‘𝐵) = 𝐽 ↔ ∀𝑥 ∈ 𝐽 𝑥 ∈ (topGen‘𝐵))) |
10 | ssexg 4121 | . . . . 5 ⊢ ((𝐵 ⊆ 𝐽 ∧ 𝐽 ∈ Top) → 𝐵 ∈ V) | |
11 | 10 | ancoms 266 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽) → 𝐵 ∈ V) |
12 | eltg3 12697 | . . . 4 ⊢ (𝐵 ∈ V → (𝑥 ∈ (topGen‘𝐵) ↔ ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦))) | |
13 | 11, 12 | syl 14 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽) → (𝑥 ∈ (topGen‘𝐵) ↔ ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦))) |
14 | 13 | ralbidv 2466 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽) → (∀𝑥 ∈ 𝐽 𝑥 ∈ (topGen‘𝐵) ↔ ∀𝑥 ∈ 𝐽 ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦))) |
15 | 9, 14 | bitrd 187 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽) → ((topGen‘𝐵) = 𝐽 ↔ ∀𝑥 ∈ 𝐽 ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∃wex 1480 ∈ wcel 2136 ∀wral 2444 Vcvv 2726 ⊆ wss 3116 ∪ cuni 3789 ‘cfv 5188 topGenctg 12571 Topctop 12635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-topgen 12577 df-top 12636 |
This theorem is referenced by: bastop2 12724 |
Copyright terms: Public domain | W3C validator |