| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bastop1 | GIF version | ||
| Description: A subset of a topology is a basis for the topology iff every member of the topology is a union of members of the basis. We use the idiom "(topGen‘𝐵) = 𝐽 " to express "𝐵 is a basis for topology 𝐽 " since we do not have a separate notation for this. Definition 15.35 of [Schechter] p. 428. (Contributed by NM, 2-Feb-2008.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| bastop1 | ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽) → ((topGen‘𝐵) = 𝐽 ↔ ∀𝑥 ∈ 𝐽 ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgss 14731 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽) → (topGen‘𝐵) ⊆ (topGen‘𝐽)) | |
| 2 | tgtop 14736 | . . . . . 6 ⊢ (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽) | |
| 3 | 2 | adantr 276 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽) → (topGen‘𝐽) = 𝐽) |
| 4 | 1, 3 | sseqtrd 3262 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽) → (topGen‘𝐵) ⊆ 𝐽) |
| 5 | eqss 3239 | . . . . 5 ⊢ ((topGen‘𝐵) = 𝐽 ↔ ((topGen‘𝐵) ⊆ 𝐽 ∧ 𝐽 ⊆ (topGen‘𝐵))) | |
| 6 | 5 | baib 924 | . . . 4 ⊢ ((topGen‘𝐵) ⊆ 𝐽 → ((topGen‘𝐵) = 𝐽 ↔ 𝐽 ⊆ (topGen‘𝐵))) |
| 7 | 4, 6 | syl 14 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽) → ((topGen‘𝐵) = 𝐽 ↔ 𝐽 ⊆ (topGen‘𝐵))) |
| 8 | dfss3 3213 | . . 3 ⊢ (𝐽 ⊆ (topGen‘𝐵) ↔ ∀𝑥 ∈ 𝐽 𝑥 ∈ (topGen‘𝐵)) | |
| 9 | 7, 8 | bitrdi 196 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽) → ((topGen‘𝐵) = 𝐽 ↔ ∀𝑥 ∈ 𝐽 𝑥 ∈ (topGen‘𝐵))) |
| 10 | ssexg 4222 | . . . . 5 ⊢ ((𝐵 ⊆ 𝐽 ∧ 𝐽 ∈ Top) → 𝐵 ∈ V) | |
| 11 | 10 | ancoms 268 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽) → 𝐵 ∈ V) |
| 12 | eltg3 14725 | . . . 4 ⊢ (𝐵 ∈ V → (𝑥 ∈ (topGen‘𝐵) ↔ ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦))) | |
| 13 | 11, 12 | syl 14 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽) → (𝑥 ∈ (topGen‘𝐵) ↔ ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦))) |
| 14 | 13 | ralbidv 2530 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽) → (∀𝑥 ∈ 𝐽 𝑥 ∈ (topGen‘𝐵) ↔ ∀𝑥 ∈ 𝐽 ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦))) |
| 15 | 9, 14 | bitrd 188 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽) → ((topGen‘𝐵) = 𝐽 ↔ ∀𝑥 ∈ 𝐽 ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∃wex 1538 ∈ wcel 2200 ∀wral 2508 Vcvv 2799 ⊆ wss 3197 ∪ cuni 3887 ‘cfv 5317 topGenctg 13282 Topctop 14665 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-topgen 13288 df-top 14666 |
| This theorem is referenced by: bastop2 14752 |
| Copyright terms: Public domain | W3C validator |