![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bastop1 | GIF version |
Description: A subset of a topology is a basis for the topology iff every member of the topology is a union of members of the basis. We use the idiom "(topGenβπ΅) = π½ " to express "π΅ is a basis for topology π½ " since we do not have a separate notation for this. Definition 15.35 of [Schechter] p. 428. (Contributed by NM, 2-Feb-2008.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) |
Ref | Expression |
---|---|
bastop1 | β’ ((π½ β Top β§ π΅ β π½) β ((topGenβπ΅) = π½ β βπ₯ β π½ βπ¦(π¦ β π΅ β§ π₯ = βͺ π¦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgss 13602 | . . . . 5 β’ ((π½ β Top β§ π΅ β π½) β (topGenβπ΅) β (topGenβπ½)) | |
2 | tgtop 13607 | . . . . . 6 β’ (π½ β Top β (topGenβπ½) = π½) | |
3 | 2 | adantr 276 | . . . . 5 β’ ((π½ β Top β§ π΅ β π½) β (topGenβπ½) = π½) |
4 | 1, 3 | sseqtrd 3195 | . . . 4 β’ ((π½ β Top β§ π΅ β π½) β (topGenβπ΅) β π½) |
5 | eqss 3172 | . . . . 5 β’ ((topGenβπ΅) = π½ β ((topGenβπ΅) β π½ β§ π½ β (topGenβπ΅))) | |
6 | 5 | baib 919 | . . . 4 β’ ((topGenβπ΅) β π½ β ((topGenβπ΅) = π½ β π½ β (topGenβπ΅))) |
7 | 4, 6 | syl 14 | . . 3 β’ ((π½ β Top β§ π΅ β π½) β ((topGenβπ΅) = π½ β π½ β (topGenβπ΅))) |
8 | dfss3 3147 | . . 3 β’ (π½ β (topGenβπ΅) β βπ₯ β π½ π₯ β (topGenβπ΅)) | |
9 | 7, 8 | bitrdi 196 | . 2 β’ ((π½ β Top β§ π΅ β π½) β ((topGenβπ΅) = π½ β βπ₯ β π½ π₯ β (topGenβπ΅))) |
10 | ssexg 4144 | . . . . 5 β’ ((π΅ β π½ β§ π½ β Top) β π΅ β V) | |
11 | 10 | ancoms 268 | . . . 4 β’ ((π½ β Top β§ π΅ β π½) β π΅ β V) |
12 | eltg3 13596 | . . . 4 β’ (π΅ β V β (π₯ β (topGenβπ΅) β βπ¦(π¦ β π΅ β§ π₯ = βͺ π¦))) | |
13 | 11, 12 | syl 14 | . . 3 β’ ((π½ β Top β§ π΅ β π½) β (π₯ β (topGenβπ΅) β βπ¦(π¦ β π΅ β§ π₯ = βͺ π¦))) |
14 | 13 | ralbidv 2477 | . 2 β’ ((π½ β Top β§ π΅ β π½) β (βπ₯ β π½ π₯ β (topGenβπ΅) β βπ₯ β π½ βπ¦(π¦ β π΅ β§ π₯ = βͺ π¦))) |
15 | 9, 14 | bitrd 188 | 1 β’ ((π½ β Top β§ π΅ β π½) β ((topGenβπ΅) = π½ β βπ₯ β π½ βπ¦(π¦ β π΅ β§ π₯ = βͺ π¦))) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 β wb 105 = wceq 1353 βwex 1492 β wcel 2148 βwral 2455 Vcvv 2739 β wss 3131 βͺ cuni 3811 βcfv 5218 topGenctg 12708 Topctop 13536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-sbc 2965 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-iota 5180 df-fun 5220 df-fv 5226 df-topgen 12714 df-top 13537 |
This theorem is referenced by: bastop2 13623 |
Copyright terms: Public domain | W3C validator |