ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difrp GIF version

Theorem difrp 9844
Description: Two ways to say one number is less than another. (Contributed by Mario Carneiro, 21-May-2014.)
Assertion
Ref Expression
difrp ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐵𝐴) ∈ ℝ+))

Proof of Theorem difrp
StepHypRef Expression
1 posdif 8558 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
2 resubcl 8366 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵𝐴) ∈ ℝ)
32ancoms 268 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵𝐴) ∈ ℝ)
4 elrp 9807 . . . 4 ((𝐵𝐴) ∈ ℝ+ ↔ ((𝐵𝐴) ∈ ℝ ∧ 0 < (𝐵𝐴)))
54baib 921 . . 3 ((𝐵𝐴) ∈ ℝ → ((𝐵𝐴) ∈ ℝ+ ↔ 0 < (𝐵𝐴)))
63, 5syl 14 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵𝐴) ∈ ℝ+ ↔ 0 < (𝐵𝐴)))
71, 6bitr4d 191 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐵𝐴) ∈ ℝ+))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2177   class class class wbr 4054  (class class class)co 5962  cr 7954  0cc0 7955   < clt 8137  cmin 8273  +crp 9805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-addcom 8055  ax-addass 8057  ax-distr 8059  ax-i2m1 8060  ax-0id 8063  ax-rnegex 8064  ax-cnre 8066  ax-pre-ltadd 8071
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-br 4055  df-opab 4117  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-iota 5246  df-fun 5287  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-pnf 8139  df-mnf 8140  df-ltxr 8142  df-sub 8275  df-neg 8276  df-rp 9806
This theorem is referenced by:  lincmb01cmp  10155  iccf1o  10156  recvguniq  11391  resqrexlemcalc2  11411  resqrexlemnmsq  11413  resqrexlemnm  11414  resqrexlemoverl  11417  fsumlt  11860  expcnvap0  11898  cvgratnnlemrate  11926  eflegeo  12097  blssps  14984  blss  14985  eflt  15332  cosordlem  15406  logdivlti  15438  apdifflemf  16157
  Copyright terms: Public domain W3C validator