ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovid GIF version

Theorem ovid 6061
Description: The value of an operation class abstraction. (Contributed by NM, 16-May-1995.) (Revised by David Abernethy, 19-Jun-2012.)
Hypotheses
Ref Expression
ovid.1 ((𝑥𝑅𝑦𝑆) → ∃!𝑧𝜑)
ovid.2 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}
Assertion
Ref Expression
ovid ((𝑥𝑅𝑦𝑆) → ((𝑥𝐹𝑦) = 𝑧𝜑))
Distinct variable groups:   𝑥,𝑦,𝑧   𝑧,𝑅   𝑧,𝑆
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝐹(𝑥,𝑦,𝑧)

Proof of Theorem ovid
StepHypRef Expression
1 df-ov 5946 . . 3 (𝑥𝐹𝑦) = (𝐹‘⟨𝑥, 𝑦⟩)
21eqeq1i 2212 . 2 ((𝑥𝐹𝑦) = 𝑧 ↔ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧)
3 ovid.1 . . . . . 6 ((𝑥𝑅𝑦𝑆) → ∃!𝑧𝜑)
43fnoprab 6047 . . . . 5 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)} Fn {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑆)}
5 ovid.2 . . . . . 6 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}
65fneq1i 5367 . . . . 5 (𝐹 Fn {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑆)} ↔ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)} Fn {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑆)})
74, 6mpbir 146 . . . 4 𝐹 Fn {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑆)}
8 opabid 4301 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑆)} ↔ (𝑥𝑅𝑦𝑆))
98biimpri 133 . . . 4 ((𝑥𝑅𝑦𝑆) → ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑆)})
10 fnopfvb 5619 . . . 4 ((𝐹 Fn {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑆)} ∧ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑆)}) → ((𝐹‘⟨𝑥, 𝑦⟩) = 𝑧 ↔ ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐹))
117, 9, 10sylancr 414 . . 3 ((𝑥𝑅𝑦𝑆) → ((𝐹‘⟨𝑥, 𝑦⟩) = 𝑧 ↔ ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐹))
125eleq2i 2271 . . . . 5 (⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐹 ↔ ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)})
13 oprabid 5975 . . . . 5 (⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)} ↔ ((𝑥𝑅𝑦𝑆) ∧ 𝜑))
1412, 13bitri 184 . . . 4 (⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐹 ↔ ((𝑥𝑅𝑦𝑆) ∧ 𝜑))
1514baib 920 . . 3 ((𝑥𝑅𝑦𝑆) → (⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐹𝜑))
1611, 15bitrd 188 . 2 ((𝑥𝑅𝑦𝑆) → ((𝐹‘⟨𝑥, 𝑦⟩) = 𝑧𝜑))
172, 16bitrid 192 1 ((𝑥𝑅𝑦𝑆) → ((𝑥𝐹𝑦) = 𝑧𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1372  ∃!weu 2053  wcel 2175  cop 3635  {copab 4103   Fn wfn 5265  cfv 5270  (class class class)co 5943  {coprab 5944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-setind 4584
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-iota 5231  df-fun 5272  df-fn 5273  df-fv 5278  df-ov 5946  df-oprab 5947
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator