ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inl11 GIF version

Theorem inl11 7066
Description: Left injection is one-to-one. (Contributed by Jim Kingdon, 12-Jul-2023.)
Assertion
Ref Expression
inl11 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ π‘Š) β†’ ((inlβ€˜π΄) = (inlβ€˜π΅) ↔ 𝐴 = 𝐡))

Proof of Theorem inl11
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 df-inl 7048 . . . 4 inl = (π‘₯ ∈ V ↦ βŸ¨βˆ…, π‘₯⟩)
2 opeq2 3781 . . . 4 (π‘₯ = 𝐴 β†’ βŸ¨βˆ…, π‘₯⟩ = βŸ¨βˆ…, 𝐴⟩)
3 elex 2750 . . . . 5 (𝐴 ∈ 𝑉 β†’ 𝐴 ∈ V)
43adantr 276 . . . 4 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ π‘Š) β†’ 𝐴 ∈ V)
5 0ex 4132 . . . . 5 βˆ… ∈ V
6 simpl 109 . . . . 5 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ π‘Š) β†’ 𝐴 ∈ 𝑉)
7 opexg 4230 . . . . 5 ((βˆ… ∈ V ∧ 𝐴 ∈ 𝑉) β†’ βŸ¨βˆ…, 𝐴⟩ ∈ V)
85, 6, 7sylancr 414 . . . 4 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ π‘Š) β†’ βŸ¨βˆ…, 𝐴⟩ ∈ V)
91, 2, 4, 8fvmptd3 5611 . . 3 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ π‘Š) β†’ (inlβ€˜π΄) = βŸ¨βˆ…, 𝐴⟩)
10 opeq2 3781 . . . 4 (π‘₯ = 𝐡 β†’ βŸ¨βˆ…, π‘₯⟩ = βŸ¨βˆ…, 𝐡⟩)
11 elex 2750 . . . . 5 (𝐡 ∈ π‘Š β†’ 𝐡 ∈ V)
1211adantl 277 . . . 4 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ π‘Š) β†’ 𝐡 ∈ V)
135a1i 9 . . . . 5 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ π‘Š) β†’ βˆ… ∈ V)
14 opexg 4230 . . . . 5 ((βˆ… ∈ V ∧ 𝐡 ∈ π‘Š) β†’ βŸ¨βˆ…, 𝐡⟩ ∈ V)
1513, 14sylancom 420 . . . 4 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ π‘Š) β†’ βŸ¨βˆ…, 𝐡⟩ ∈ V)
161, 10, 12, 15fvmptd3 5611 . . 3 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ π‘Š) β†’ (inlβ€˜π΅) = βŸ¨βˆ…, 𝐡⟩)
179, 16eqeq12d 2192 . 2 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ π‘Š) β†’ ((inlβ€˜π΄) = (inlβ€˜π΅) ↔ βŸ¨βˆ…, 𝐴⟩ = βŸ¨βˆ…, 𝐡⟩))
18 opthg 4240 . . . . 5 ((βˆ… ∈ V ∧ 𝐴 ∈ 𝑉) β†’ (βŸ¨βˆ…, 𝐴⟩ = βŸ¨βˆ…, 𝐡⟩ ↔ (βˆ… = βˆ… ∧ 𝐴 = 𝐡)))
195, 18mpan 424 . . . 4 (𝐴 ∈ 𝑉 β†’ (βŸ¨βˆ…, 𝐴⟩ = βŸ¨βˆ…, 𝐡⟩ ↔ (βˆ… = βˆ… ∧ 𝐴 = 𝐡)))
20 eqid 2177 . . . . 5 βˆ… = βˆ…
2120biantrur 303 . . . 4 (𝐴 = 𝐡 ↔ (βˆ… = βˆ… ∧ 𝐴 = 𝐡))
2219, 21bitr4di 198 . . 3 (𝐴 ∈ 𝑉 β†’ (βŸ¨βˆ…, 𝐴⟩ = βŸ¨βˆ…, 𝐡⟩ ↔ 𝐴 = 𝐡))
2322adantr 276 . 2 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ π‘Š) β†’ (βŸ¨βˆ…, 𝐴⟩ = βŸ¨βˆ…, 𝐡⟩ ↔ 𝐴 = 𝐡))
2417, 23bitrd 188 1 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ π‘Š) β†’ ((inlβ€˜π΄) = (inlβ€˜π΅) ↔ 𝐴 = 𝐡))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   ↔ wb 105   = wceq 1353   ∈ wcel 2148  Vcvv 2739  βˆ…c0 3424  βŸ¨cop 3597  β€˜cfv 5218  inlcinl 7046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-inl 7048
This theorem is referenced by:  omp1eomlem  7095  difinfsnlem  7100
  Copyright terms: Public domain W3C validator