Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > inl11 | GIF version |
Description: Left injection is one-to-one. (Contributed by Jim Kingdon, 12-Jul-2023.) |
Ref | Expression |
---|---|
inl11 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((inl‘𝐴) = (inl‘𝐵) ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inl 7012 | . . . 4 ⊢ inl = (𝑥 ∈ V ↦ 〈∅, 𝑥〉) | |
2 | opeq2 3759 | . . . 4 ⊢ (𝑥 = 𝐴 → 〈∅, 𝑥〉 = 〈∅, 𝐴〉) | |
3 | elex 2737 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
4 | 3 | adantr 274 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ∈ V) |
5 | 0ex 4109 | . . . . 5 ⊢ ∅ ∈ V | |
6 | simpl 108 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ∈ 𝑉) | |
7 | opexg 4206 | . . . . 5 ⊢ ((∅ ∈ V ∧ 𝐴 ∈ 𝑉) → 〈∅, 𝐴〉 ∈ V) | |
8 | 5, 6, 7 | sylancr 411 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈∅, 𝐴〉 ∈ V) |
9 | 1, 2, 4, 8 | fvmptd3 5579 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (inl‘𝐴) = 〈∅, 𝐴〉) |
10 | opeq2 3759 | . . . 4 ⊢ (𝑥 = 𝐵 → 〈∅, 𝑥〉 = 〈∅, 𝐵〉) | |
11 | elex 2737 | . . . . 5 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ V) | |
12 | 11 | adantl 275 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐵 ∈ V) |
13 | 5 | a1i 9 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∅ ∈ V) |
14 | opexg 4206 | . . . . 5 ⊢ ((∅ ∈ V ∧ 𝐵 ∈ 𝑊) → 〈∅, 𝐵〉 ∈ V) | |
15 | 13, 14 | sylancom 417 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈∅, 𝐵〉 ∈ V) |
16 | 1, 10, 12, 15 | fvmptd3 5579 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (inl‘𝐵) = 〈∅, 𝐵〉) |
17 | 9, 16 | eqeq12d 2180 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((inl‘𝐴) = (inl‘𝐵) ↔ 〈∅, 𝐴〉 = 〈∅, 𝐵〉)) |
18 | opthg 4216 | . . . . 5 ⊢ ((∅ ∈ V ∧ 𝐴 ∈ 𝑉) → (〈∅, 𝐴〉 = 〈∅, 𝐵〉 ↔ (∅ = ∅ ∧ 𝐴 = 𝐵))) | |
19 | 5, 18 | mpan 421 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (〈∅, 𝐴〉 = 〈∅, 𝐵〉 ↔ (∅ = ∅ ∧ 𝐴 = 𝐵))) |
20 | eqid 2165 | . . . . 5 ⊢ ∅ = ∅ | |
21 | 20 | biantrur 301 | . . . 4 ⊢ (𝐴 = 𝐵 ↔ (∅ = ∅ ∧ 𝐴 = 𝐵)) |
22 | 19, 21 | bitr4di 197 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (〈∅, 𝐴〉 = 〈∅, 𝐵〉 ↔ 𝐴 = 𝐵)) |
23 | 22 | adantr 274 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈∅, 𝐴〉 = 〈∅, 𝐵〉 ↔ 𝐴 = 𝐵)) |
24 | 17, 23 | bitrd 187 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((inl‘𝐴) = (inl‘𝐵) ↔ 𝐴 = 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∈ wcel 2136 Vcvv 2726 ∅c0 3409 〈cop 3579 ‘cfv 5188 inlcinl 7010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-inl 7012 |
This theorem is referenced by: omp1eomlem 7059 difinfsnlem 7064 |
Copyright terms: Public domain | W3C validator |