ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inl11 GIF version

Theorem inl11 7166
Description: Left injection is one-to-one. (Contributed by Jim Kingdon, 12-Jul-2023.)
Assertion
Ref Expression
inl11 ((𝐴𝑉𝐵𝑊) → ((inl‘𝐴) = (inl‘𝐵) ↔ 𝐴 = 𝐵))

Proof of Theorem inl11
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-inl 7148 . . . 4 inl = (𝑥 ∈ V ↦ ⟨∅, 𝑥⟩)
2 opeq2 3819 . . . 4 (𝑥 = 𝐴 → ⟨∅, 𝑥⟩ = ⟨∅, 𝐴⟩)
3 elex 2782 . . . . 5 (𝐴𝑉𝐴 ∈ V)
43adantr 276 . . . 4 ((𝐴𝑉𝐵𝑊) → 𝐴 ∈ V)
5 0ex 4170 . . . . 5 ∅ ∈ V
6 simpl 109 . . . . 5 ((𝐴𝑉𝐵𝑊) → 𝐴𝑉)
7 opexg 4271 . . . . 5 ((∅ ∈ V ∧ 𝐴𝑉) → ⟨∅, 𝐴⟩ ∈ V)
85, 6, 7sylancr 414 . . . 4 ((𝐴𝑉𝐵𝑊) → ⟨∅, 𝐴⟩ ∈ V)
91, 2, 4, 8fvmptd3 5672 . . 3 ((𝐴𝑉𝐵𝑊) → (inl‘𝐴) = ⟨∅, 𝐴⟩)
10 opeq2 3819 . . . 4 (𝑥 = 𝐵 → ⟨∅, 𝑥⟩ = ⟨∅, 𝐵⟩)
11 elex 2782 . . . . 5 (𝐵𝑊𝐵 ∈ V)
1211adantl 277 . . . 4 ((𝐴𝑉𝐵𝑊) → 𝐵 ∈ V)
135a1i 9 . . . . 5 ((𝐴𝑉𝐵𝑊) → ∅ ∈ V)
14 opexg 4271 . . . . 5 ((∅ ∈ V ∧ 𝐵𝑊) → ⟨∅, 𝐵⟩ ∈ V)
1513, 14sylancom 420 . . . 4 ((𝐴𝑉𝐵𝑊) → ⟨∅, 𝐵⟩ ∈ V)
161, 10, 12, 15fvmptd3 5672 . . 3 ((𝐴𝑉𝐵𝑊) → (inl‘𝐵) = ⟨∅, 𝐵⟩)
179, 16eqeq12d 2219 . 2 ((𝐴𝑉𝐵𝑊) → ((inl‘𝐴) = (inl‘𝐵) ↔ ⟨∅, 𝐴⟩ = ⟨∅, 𝐵⟩))
18 opthg 4281 . . . . 5 ((∅ ∈ V ∧ 𝐴𝑉) → (⟨∅, 𝐴⟩ = ⟨∅, 𝐵⟩ ↔ (∅ = ∅ ∧ 𝐴 = 𝐵)))
195, 18mpan 424 . . . 4 (𝐴𝑉 → (⟨∅, 𝐴⟩ = ⟨∅, 𝐵⟩ ↔ (∅ = ∅ ∧ 𝐴 = 𝐵)))
20 eqid 2204 . . . . 5 ∅ = ∅
2120biantrur 303 . . . 4 (𝐴 = 𝐵 ↔ (∅ = ∅ ∧ 𝐴 = 𝐵))
2219, 21bitr4di 198 . . 3 (𝐴𝑉 → (⟨∅, 𝐴⟩ = ⟨∅, 𝐵⟩ ↔ 𝐴 = 𝐵))
2322adantr 276 . 2 ((𝐴𝑉𝐵𝑊) → (⟨∅, 𝐴⟩ = ⟨∅, 𝐵⟩ ↔ 𝐴 = 𝐵))
2417, 23bitrd 188 1 ((𝐴𝑉𝐵𝑊) → ((inl‘𝐴) = (inl‘𝐵) ↔ 𝐴 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1372  wcel 2175  Vcvv 2771  c0 3459  cop 3635  cfv 5270  inlcinl 7146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-iota 5231  df-fun 5272  df-fv 5278  df-inl 7148
This theorem is referenced by:  omp1eomlem  7195  difinfsnlem  7200
  Copyright terms: Public domain W3C validator