Step | Hyp | Ref
| Expression |
1 | | df-inl 7048 |
. . . 4
β’ inl =
(π₯ β V β¦
β¨β
, π₯β©) |
2 | | opeq2 3781 |
. . . 4
β’ (π₯ = π΄ β β¨β
, π₯β© = β¨β
, π΄β©) |
3 | | elex 2750 |
. . . . 5
β’ (π΄ β π β π΄ β V) |
4 | 3 | adantr 276 |
. . . 4
β’ ((π΄ β π β§ π΅ β π) β π΄ β V) |
5 | | 0ex 4132 |
. . . . 5
β’ β
β V |
6 | | simpl 109 |
. . . . 5
β’ ((π΄ β π β§ π΅ β π) β π΄ β π) |
7 | | opexg 4230 |
. . . . 5
β’ ((β
β V β§ π΄ β
π) β β¨β
,
π΄β© β
V) |
8 | 5, 6, 7 | sylancr 414 |
. . . 4
β’ ((π΄ β π β§ π΅ β π) β β¨β
, π΄β© β V) |
9 | 1, 2, 4, 8 | fvmptd3 5611 |
. . 3
β’ ((π΄ β π β§ π΅ β π) β (inlβπ΄) = β¨β
, π΄β©) |
10 | | opeq2 3781 |
. . . 4
β’ (π₯ = π΅ β β¨β
, π₯β© = β¨β
, π΅β©) |
11 | | elex 2750 |
. . . . 5
β’ (π΅ β π β π΅ β V) |
12 | 11 | adantl 277 |
. . . 4
β’ ((π΄ β π β§ π΅ β π) β π΅ β V) |
13 | 5 | a1i 9 |
. . . . 5
β’ ((π΄ β π β§ π΅ β π) β β
β V) |
14 | | opexg 4230 |
. . . . 5
β’ ((β
β V β§ π΅ β
π) β β¨β
,
π΅β© β
V) |
15 | 13, 14 | sylancom 420 |
. . . 4
β’ ((π΄ β π β§ π΅ β π) β β¨β
, π΅β© β V) |
16 | 1, 10, 12, 15 | fvmptd3 5611 |
. . 3
β’ ((π΄ β π β§ π΅ β π) β (inlβπ΅) = β¨β
, π΅β©) |
17 | 9, 16 | eqeq12d 2192 |
. 2
β’ ((π΄ β π β§ π΅ β π) β ((inlβπ΄) = (inlβπ΅) β β¨β
, π΄β© = β¨β
, π΅β©)) |
18 | | opthg 4240 |
. . . . 5
β’ ((β
β V β§ π΄ β
π) β (β¨β
,
π΄β© = β¨β
,
π΅β© β (β
=
β
β§ π΄ = π΅))) |
19 | 5, 18 | mpan 424 |
. . . 4
β’ (π΄ β π β (β¨β
, π΄β© = β¨β
, π΅β© β (β
= β
β§ π΄ = π΅))) |
20 | | eqid 2177 |
. . . . 5
β’ β
=
β
|
21 | 20 | biantrur 303 |
. . . 4
β’ (π΄ = π΅ β (β
= β
β§ π΄ = π΅)) |
22 | 19, 21 | bitr4di 198 |
. . 3
β’ (π΄ β π β (β¨β
, π΄β© = β¨β
, π΅β© β π΄ = π΅)) |
23 | 22 | adantr 276 |
. 2
β’ ((π΄ β π β§ π΅ β π) β (β¨β
, π΄β© = β¨β
, π΅β© β π΄ = π΅)) |
24 | 17, 23 | bitrd 188 |
1
β’ ((π΄ β π β§ π΅ β π) β ((inlβπ΄) = (inlβπ΅) β π΄ = π΅)) |