ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inl11 GIF version

Theorem inl11 7167
Description: Left injection is one-to-one. (Contributed by Jim Kingdon, 12-Jul-2023.)
Assertion
Ref Expression
inl11 ((𝐴𝑉𝐵𝑊) → ((inl‘𝐴) = (inl‘𝐵) ↔ 𝐴 = 𝐵))

Proof of Theorem inl11
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-inl 7149 . . . 4 inl = (𝑥 ∈ V ↦ ⟨∅, 𝑥⟩)
2 opeq2 3820 . . . 4 (𝑥 = 𝐴 → ⟨∅, 𝑥⟩ = ⟨∅, 𝐴⟩)
3 elex 2783 . . . . 5 (𝐴𝑉𝐴 ∈ V)
43adantr 276 . . . 4 ((𝐴𝑉𝐵𝑊) → 𝐴 ∈ V)
5 0ex 4171 . . . . 5 ∅ ∈ V
6 simpl 109 . . . . 5 ((𝐴𝑉𝐵𝑊) → 𝐴𝑉)
7 opexg 4272 . . . . 5 ((∅ ∈ V ∧ 𝐴𝑉) → ⟨∅, 𝐴⟩ ∈ V)
85, 6, 7sylancr 414 . . . 4 ((𝐴𝑉𝐵𝑊) → ⟨∅, 𝐴⟩ ∈ V)
91, 2, 4, 8fvmptd3 5673 . . 3 ((𝐴𝑉𝐵𝑊) → (inl‘𝐴) = ⟨∅, 𝐴⟩)
10 opeq2 3820 . . . 4 (𝑥 = 𝐵 → ⟨∅, 𝑥⟩ = ⟨∅, 𝐵⟩)
11 elex 2783 . . . . 5 (𝐵𝑊𝐵 ∈ V)
1211adantl 277 . . . 4 ((𝐴𝑉𝐵𝑊) → 𝐵 ∈ V)
135a1i 9 . . . . 5 ((𝐴𝑉𝐵𝑊) → ∅ ∈ V)
14 opexg 4272 . . . . 5 ((∅ ∈ V ∧ 𝐵𝑊) → ⟨∅, 𝐵⟩ ∈ V)
1513, 14sylancom 420 . . . 4 ((𝐴𝑉𝐵𝑊) → ⟨∅, 𝐵⟩ ∈ V)
161, 10, 12, 15fvmptd3 5673 . . 3 ((𝐴𝑉𝐵𝑊) → (inl‘𝐵) = ⟨∅, 𝐵⟩)
179, 16eqeq12d 2220 . 2 ((𝐴𝑉𝐵𝑊) → ((inl‘𝐴) = (inl‘𝐵) ↔ ⟨∅, 𝐴⟩ = ⟨∅, 𝐵⟩))
18 opthg 4282 . . . . 5 ((∅ ∈ V ∧ 𝐴𝑉) → (⟨∅, 𝐴⟩ = ⟨∅, 𝐵⟩ ↔ (∅ = ∅ ∧ 𝐴 = 𝐵)))
195, 18mpan 424 . . . 4 (𝐴𝑉 → (⟨∅, 𝐴⟩ = ⟨∅, 𝐵⟩ ↔ (∅ = ∅ ∧ 𝐴 = 𝐵)))
20 eqid 2205 . . . . 5 ∅ = ∅
2120biantrur 303 . . . 4 (𝐴 = 𝐵 ↔ (∅ = ∅ ∧ 𝐴 = 𝐵))
2219, 21bitr4di 198 . . 3 (𝐴𝑉 → (⟨∅, 𝐴⟩ = ⟨∅, 𝐵⟩ ↔ 𝐴 = 𝐵))
2322adantr 276 . 2 ((𝐴𝑉𝐵𝑊) → (⟨∅, 𝐴⟩ = ⟨∅, 𝐵⟩ ↔ 𝐴 = 𝐵))
2417, 23bitrd 188 1 ((𝐴𝑉𝐵𝑊) → ((inl‘𝐴) = (inl‘𝐵) ↔ 𝐴 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2176  Vcvv 2772  c0 3460  cop 3636  cfv 5271  inlcinl 7147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279  df-inl 7149
This theorem is referenced by:  omp1eomlem  7196  difinfsnlem  7201
  Copyright terms: Public domain W3C validator