| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > inl11 | GIF version | ||
| Description: Left injection is one-to-one. (Contributed by Jim Kingdon, 12-Jul-2023.) |
| Ref | Expression |
|---|---|
| inl11 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((inl‘𝐴) = (inl‘𝐵) ↔ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inl 7149 | . . . 4 ⊢ inl = (𝑥 ∈ V ↦ 〈∅, 𝑥〉) | |
| 2 | opeq2 3820 | . . . 4 ⊢ (𝑥 = 𝐴 → 〈∅, 𝑥〉 = 〈∅, 𝐴〉) | |
| 3 | elex 2783 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 4 | 3 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ∈ V) |
| 5 | 0ex 4171 | . . . . 5 ⊢ ∅ ∈ V | |
| 6 | simpl 109 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ∈ 𝑉) | |
| 7 | opexg 4272 | . . . . 5 ⊢ ((∅ ∈ V ∧ 𝐴 ∈ 𝑉) → 〈∅, 𝐴〉 ∈ V) | |
| 8 | 5, 6, 7 | sylancr 414 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈∅, 𝐴〉 ∈ V) |
| 9 | 1, 2, 4, 8 | fvmptd3 5673 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (inl‘𝐴) = 〈∅, 𝐴〉) |
| 10 | opeq2 3820 | . . . 4 ⊢ (𝑥 = 𝐵 → 〈∅, 𝑥〉 = 〈∅, 𝐵〉) | |
| 11 | elex 2783 | . . . . 5 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ V) | |
| 12 | 11 | adantl 277 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐵 ∈ V) |
| 13 | 5 | a1i 9 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∅ ∈ V) |
| 14 | opexg 4272 | . . . . 5 ⊢ ((∅ ∈ V ∧ 𝐵 ∈ 𝑊) → 〈∅, 𝐵〉 ∈ V) | |
| 15 | 13, 14 | sylancom 420 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈∅, 𝐵〉 ∈ V) |
| 16 | 1, 10, 12, 15 | fvmptd3 5673 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (inl‘𝐵) = 〈∅, 𝐵〉) |
| 17 | 9, 16 | eqeq12d 2220 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((inl‘𝐴) = (inl‘𝐵) ↔ 〈∅, 𝐴〉 = 〈∅, 𝐵〉)) |
| 18 | opthg 4282 | . . . . 5 ⊢ ((∅ ∈ V ∧ 𝐴 ∈ 𝑉) → (〈∅, 𝐴〉 = 〈∅, 𝐵〉 ↔ (∅ = ∅ ∧ 𝐴 = 𝐵))) | |
| 19 | 5, 18 | mpan 424 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (〈∅, 𝐴〉 = 〈∅, 𝐵〉 ↔ (∅ = ∅ ∧ 𝐴 = 𝐵))) |
| 20 | eqid 2205 | . . . . 5 ⊢ ∅ = ∅ | |
| 21 | 20 | biantrur 303 | . . . 4 ⊢ (𝐴 = 𝐵 ↔ (∅ = ∅ ∧ 𝐴 = 𝐵)) |
| 22 | 19, 21 | bitr4di 198 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (〈∅, 𝐴〉 = 〈∅, 𝐵〉 ↔ 𝐴 = 𝐵)) |
| 23 | 22 | adantr 276 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈∅, 𝐴〉 = 〈∅, 𝐵〉 ↔ 𝐴 = 𝐵)) |
| 24 | 17, 23 | bitrd 188 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((inl‘𝐴) = (inl‘𝐵) ↔ 𝐴 = 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2176 Vcvv 2772 ∅c0 3460 〈cop 3636 ‘cfv 5271 inlcinl 7147 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-inl 7149 |
| This theorem is referenced by: omp1eomlem 7196 difinfsnlem 7201 |
| Copyright terms: Public domain | W3C validator |