ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inl11 GIF version

Theorem inl11 7193
Description: Left injection is one-to-one. (Contributed by Jim Kingdon, 12-Jul-2023.)
Assertion
Ref Expression
inl11 ((𝐴𝑉𝐵𝑊) → ((inl‘𝐴) = (inl‘𝐵) ↔ 𝐴 = 𝐵))

Proof of Theorem inl11
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-inl 7175 . . . 4 inl = (𝑥 ∈ V ↦ ⟨∅, 𝑥⟩)
2 opeq2 3834 . . . 4 (𝑥 = 𝐴 → ⟨∅, 𝑥⟩ = ⟨∅, 𝐴⟩)
3 elex 2788 . . . . 5 (𝐴𝑉𝐴 ∈ V)
43adantr 276 . . . 4 ((𝐴𝑉𝐵𝑊) → 𝐴 ∈ V)
5 0ex 4187 . . . . 5 ∅ ∈ V
6 simpl 109 . . . . 5 ((𝐴𝑉𝐵𝑊) → 𝐴𝑉)
7 opexg 4290 . . . . 5 ((∅ ∈ V ∧ 𝐴𝑉) → ⟨∅, 𝐴⟩ ∈ V)
85, 6, 7sylancr 414 . . . 4 ((𝐴𝑉𝐵𝑊) → ⟨∅, 𝐴⟩ ∈ V)
91, 2, 4, 8fvmptd3 5696 . . 3 ((𝐴𝑉𝐵𝑊) → (inl‘𝐴) = ⟨∅, 𝐴⟩)
10 opeq2 3834 . . . 4 (𝑥 = 𝐵 → ⟨∅, 𝑥⟩ = ⟨∅, 𝐵⟩)
11 elex 2788 . . . . 5 (𝐵𝑊𝐵 ∈ V)
1211adantl 277 . . . 4 ((𝐴𝑉𝐵𝑊) → 𝐵 ∈ V)
135a1i 9 . . . . 5 ((𝐴𝑉𝐵𝑊) → ∅ ∈ V)
14 opexg 4290 . . . . 5 ((∅ ∈ V ∧ 𝐵𝑊) → ⟨∅, 𝐵⟩ ∈ V)
1513, 14sylancom 420 . . . 4 ((𝐴𝑉𝐵𝑊) → ⟨∅, 𝐵⟩ ∈ V)
161, 10, 12, 15fvmptd3 5696 . . 3 ((𝐴𝑉𝐵𝑊) → (inl‘𝐵) = ⟨∅, 𝐵⟩)
179, 16eqeq12d 2222 . 2 ((𝐴𝑉𝐵𝑊) → ((inl‘𝐴) = (inl‘𝐵) ↔ ⟨∅, 𝐴⟩ = ⟨∅, 𝐵⟩))
18 opthg 4300 . . . . 5 ((∅ ∈ V ∧ 𝐴𝑉) → (⟨∅, 𝐴⟩ = ⟨∅, 𝐵⟩ ↔ (∅ = ∅ ∧ 𝐴 = 𝐵)))
195, 18mpan 424 . . . 4 (𝐴𝑉 → (⟨∅, 𝐴⟩ = ⟨∅, 𝐵⟩ ↔ (∅ = ∅ ∧ 𝐴 = 𝐵)))
20 eqid 2207 . . . . 5 ∅ = ∅
2120biantrur 303 . . . 4 (𝐴 = 𝐵 ↔ (∅ = ∅ ∧ 𝐴 = 𝐵))
2219, 21bitr4di 198 . . 3 (𝐴𝑉 → (⟨∅, 𝐴⟩ = ⟨∅, 𝐵⟩ ↔ 𝐴 = 𝐵))
2322adantr 276 . 2 ((𝐴𝑉𝐵𝑊) → (⟨∅, 𝐴⟩ = ⟨∅, 𝐵⟩ ↔ 𝐴 = 𝐵))
2417, 23bitrd 188 1 ((𝐴𝑉𝐵𝑊) → ((inl‘𝐴) = (inl‘𝐵) ↔ 𝐴 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2178  Vcvv 2776  c0 3468  cop 3646  cfv 5290  inlcinl 7173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-inl 7175
This theorem is referenced by:  omp1eomlem  7222  difinfsnlem  7227
  Copyright terms: Public domain W3C validator