![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > inl11 | GIF version |
Description: Left injection is one-to-one. (Contributed by Jim Kingdon, 12-Jul-2023.) |
Ref | Expression |
---|---|
inl11 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((inl‘𝐴) = (inl‘𝐵) ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inl 7080 | . . . 4 ⊢ inl = (𝑥 ∈ V ↦ 〈∅, 𝑥〉) | |
2 | opeq2 3797 | . . . 4 ⊢ (𝑥 = 𝐴 → 〈∅, 𝑥〉 = 〈∅, 𝐴〉) | |
3 | elex 2763 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
4 | 3 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ∈ V) |
5 | 0ex 4148 | . . . . 5 ⊢ ∅ ∈ V | |
6 | simpl 109 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ∈ 𝑉) | |
7 | opexg 4249 | . . . . 5 ⊢ ((∅ ∈ V ∧ 𝐴 ∈ 𝑉) → 〈∅, 𝐴〉 ∈ V) | |
8 | 5, 6, 7 | sylancr 414 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈∅, 𝐴〉 ∈ V) |
9 | 1, 2, 4, 8 | fvmptd3 5633 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (inl‘𝐴) = 〈∅, 𝐴〉) |
10 | opeq2 3797 | . . . 4 ⊢ (𝑥 = 𝐵 → 〈∅, 𝑥〉 = 〈∅, 𝐵〉) | |
11 | elex 2763 | . . . . 5 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ V) | |
12 | 11 | adantl 277 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐵 ∈ V) |
13 | 5 | a1i 9 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∅ ∈ V) |
14 | opexg 4249 | . . . . 5 ⊢ ((∅ ∈ V ∧ 𝐵 ∈ 𝑊) → 〈∅, 𝐵〉 ∈ V) | |
15 | 13, 14 | sylancom 420 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈∅, 𝐵〉 ∈ V) |
16 | 1, 10, 12, 15 | fvmptd3 5633 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (inl‘𝐵) = 〈∅, 𝐵〉) |
17 | 9, 16 | eqeq12d 2204 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((inl‘𝐴) = (inl‘𝐵) ↔ 〈∅, 𝐴〉 = 〈∅, 𝐵〉)) |
18 | opthg 4259 | . . . . 5 ⊢ ((∅ ∈ V ∧ 𝐴 ∈ 𝑉) → (〈∅, 𝐴〉 = 〈∅, 𝐵〉 ↔ (∅ = ∅ ∧ 𝐴 = 𝐵))) | |
19 | 5, 18 | mpan 424 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (〈∅, 𝐴〉 = 〈∅, 𝐵〉 ↔ (∅ = ∅ ∧ 𝐴 = 𝐵))) |
20 | eqid 2189 | . . . . 5 ⊢ ∅ = ∅ | |
21 | 20 | biantrur 303 | . . . 4 ⊢ (𝐴 = 𝐵 ↔ (∅ = ∅ ∧ 𝐴 = 𝐵)) |
22 | 19, 21 | bitr4di 198 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (〈∅, 𝐴〉 = 〈∅, 𝐵〉 ↔ 𝐴 = 𝐵)) |
23 | 22 | adantr 276 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈∅, 𝐴〉 = 〈∅, 𝐵〉 ↔ 𝐴 = 𝐵)) |
24 | 17, 23 | bitrd 188 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((inl‘𝐴) = (inl‘𝐵) ↔ 𝐴 = 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2160 Vcvv 2752 ∅c0 3437 〈cop 3613 ‘cfv 5238 inlcinl 7078 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2163 ax-ext 2171 ax-sep 4139 ax-nul 4147 ax-pow 4195 ax-pr 4230 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3595 df-sn 3616 df-pr 3617 df-op 3619 df-uni 3828 df-br 4022 df-opab 4083 df-mpt 4084 df-id 4314 df-xp 4653 df-rel 4654 df-cnv 4655 df-co 4656 df-dm 4657 df-iota 5199 df-fun 5240 df-fv 5246 df-inl 7080 |
This theorem is referenced by: omp1eomlem 7127 difinfsnlem 7132 |
Copyright terms: Public domain | W3C validator |