ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inl11 GIF version

Theorem inl11 7124
Description: Left injection is one-to-one. (Contributed by Jim Kingdon, 12-Jul-2023.)
Assertion
Ref Expression
inl11 ((𝐴𝑉𝐵𝑊) → ((inl‘𝐴) = (inl‘𝐵) ↔ 𝐴 = 𝐵))

Proof of Theorem inl11
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-inl 7106 . . . 4 inl = (𝑥 ∈ V ↦ ⟨∅, 𝑥⟩)
2 opeq2 3805 . . . 4 (𝑥 = 𝐴 → ⟨∅, 𝑥⟩ = ⟨∅, 𝐴⟩)
3 elex 2771 . . . . 5 (𝐴𝑉𝐴 ∈ V)
43adantr 276 . . . 4 ((𝐴𝑉𝐵𝑊) → 𝐴 ∈ V)
5 0ex 4156 . . . . 5 ∅ ∈ V
6 simpl 109 . . . . 5 ((𝐴𝑉𝐵𝑊) → 𝐴𝑉)
7 opexg 4257 . . . . 5 ((∅ ∈ V ∧ 𝐴𝑉) → ⟨∅, 𝐴⟩ ∈ V)
85, 6, 7sylancr 414 . . . 4 ((𝐴𝑉𝐵𝑊) → ⟨∅, 𝐴⟩ ∈ V)
91, 2, 4, 8fvmptd3 5651 . . 3 ((𝐴𝑉𝐵𝑊) → (inl‘𝐴) = ⟨∅, 𝐴⟩)
10 opeq2 3805 . . . 4 (𝑥 = 𝐵 → ⟨∅, 𝑥⟩ = ⟨∅, 𝐵⟩)
11 elex 2771 . . . . 5 (𝐵𝑊𝐵 ∈ V)
1211adantl 277 . . . 4 ((𝐴𝑉𝐵𝑊) → 𝐵 ∈ V)
135a1i 9 . . . . 5 ((𝐴𝑉𝐵𝑊) → ∅ ∈ V)
14 opexg 4257 . . . . 5 ((∅ ∈ V ∧ 𝐵𝑊) → ⟨∅, 𝐵⟩ ∈ V)
1513, 14sylancom 420 . . . 4 ((𝐴𝑉𝐵𝑊) → ⟨∅, 𝐵⟩ ∈ V)
161, 10, 12, 15fvmptd3 5651 . . 3 ((𝐴𝑉𝐵𝑊) → (inl‘𝐵) = ⟨∅, 𝐵⟩)
179, 16eqeq12d 2208 . 2 ((𝐴𝑉𝐵𝑊) → ((inl‘𝐴) = (inl‘𝐵) ↔ ⟨∅, 𝐴⟩ = ⟨∅, 𝐵⟩))
18 opthg 4267 . . . . 5 ((∅ ∈ V ∧ 𝐴𝑉) → (⟨∅, 𝐴⟩ = ⟨∅, 𝐵⟩ ↔ (∅ = ∅ ∧ 𝐴 = 𝐵)))
195, 18mpan 424 . . . 4 (𝐴𝑉 → (⟨∅, 𝐴⟩ = ⟨∅, 𝐵⟩ ↔ (∅ = ∅ ∧ 𝐴 = 𝐵)))
20 eqid 2193 . . . . 5 ∅ = ∅
2120biantrur 303 . . . 4 (𝐴 = 𝐵 ↔ (∅ = ∅ ∧ 𝐴 = 𝐵))
2219, 21bitr4di 198 . . 3 (𝐴𝑉 → (⟨∅, 𝐴⟩ = ⟨∅, 𝐵⟩ ↔ 𝐴 = 𝐵))
2322adantr 276 . 2 ((𝐴𝑉𝐵𝑊) → (⟨∅, 𝐴⟩ = ⟨∅, 𝐵⟩ ↔ 𝐴 = 𝐵))
2417, 23bitrd 188 1 ((𝐴𝑉𝐵𝑊) → ((inl‘𝐴) = (inl‘𝐵) ↔ 𝐴 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  Vcvv 2760  c0 3446  cop 3621  cfv 5254  inlcinl 7104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-inl 7106
This theorem is referenced by:  omp1eomlem  7153  difinfsnlem  7158
  Copyright terms: Public domain W3C validator