| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > inl11 | GIF version | ||
| Description: Left injection is one-to-one. (Contributed by Jim Kingdon, 12-Jul-2023.) |
| Ref | Expression |
|---|---|
| inl11 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((inl‘𝐴) = (inl‘𝐵) ↔ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inl 7175 | . . . 4 ⊢ inl = (𝑥 ∈ V ↦ 〈∅, 𝑥〉) | |
| 2 | opeq2 3834 | . . . 4 ⊢ (𝑥 = 𝐴 → 〈∅, 𝑥〉 = 〈∅, 𝐴〉) | |
| 3 | elex 2788 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 4 | 3 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ∈ V) |
| 5 | 0ex 4187 | . . . . 5 ⊢ ∅ ∈ V | |
| 6 | simpl 109 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ∈ 𝑉) | |
| 7 | opexg 4290 | . . . . 5 ⊢ ((∅ ∈ V ∧ 𝐴 ∈ 𝑉) → 〈∅, 𝐴〉 ∈ V) | |
| 8 | 5, 6, 7 | sylancr 414 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈∅, 𝐴〉 ∈ V) |
| 9 | 1, 2, 4, 8 | fvmptd3 5696 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (inl‘𝐴) = 〈∅, 𝐴〉) |
| 10 | opeq2 3834 | . . . 4 ⊢ (𝑥 = 𝐵 → 〈∅, 𝑥〉 = 〈∅, 𝐵〉) | |
| 11 | elex 2788 | . . . . 5 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ V) | |
| 12 | 11 | adantl 277 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐵 ∈ V) |
| 13 | 5 | a1i 9 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∅ ∈ V) |
| 14 | opexg 4290 | . . . . 5 ⊢ ((∅ ∈ V ∧ 𝐵 ∈ 𝑊) → 〈∅, 𝐵〉 ∈ V) | |
| 15 | 13, 14 | sylancom 420 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈∅, 𝐵〉 ∈ V) |
| 16 | 1, 10, 12, 15 | fvmptd3 5696 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (inl‘𝐵) = 〈∅, 𝐵〉) |
| 17 | 9, 16 | eqeq12d 2222 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((inl‘𝐴) = (inl‘𝐵) ↔ 〈∅, 𝐴〉 = 〈∅, 𝐵〉)) |
| 18 | opthg 4300 | . . . . 5 ⊢ ((∅ ∈ V ∧ 𝐴 ∈ 𝑉) → (〈∅, 𝐴〉 = 〈∅, 𝐵〉 ↔ (∅ = ∅ ∧ 𝐴 = 𝐵))) | |
| 19 | 5, 18 | mpan 424 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (〈∅, 𝐴〉 = 〈∅, 𝐵〉 ↔ (∅ = ∅ ∧ 𝐴 = 𝐵))) |
| 20 | eqid 2207 | . . . . 5 ⊢ ∅ = ∅ | |
| 21 | 20 | biantrur 303 | . . . 4 ⊢ (𝐴 = 𝐵 ↔ (∅ = ∅ ∧ 𝐴 = 𝐵)) |
| 22 | 19, 21 | bitr4di 198 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (〈∅, 𝐴〉 = 〈∅, 𝐵〉 ↔ 𝐴 = 𝐵)) |
| 23 | 22 | adantr 276 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈∅, 𝐴〉 = 〈∅, 𝐵〉 ↔ 𝐴 = 𝐵)) |
| 24 | 17, 23 | bitrd 188 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((inl‘𝐴) = (inl‘𝐵) ↔ 𝐴 = 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2178 Vcvv 2776 ∅c0 3468 〈cop 3646 ‘cfv 5290 inlcinl 7173 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-inl 7175 |
| This theorem is referenced by: omp1eomlem 7222 difinfsnlem 7227 |
| Copyright terms: Public domain | W3C validator |