| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssidcn | GIF version | ||
| Description: The identity function is a continuous function from one topology to another topology on the same set iff the domain is finer than the codomain. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| ssidcn | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (( I ↾ 𝑋) ∈ (𝐽 Cn 𝐾) ↔ 𝐾 ⊆ 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscn 14744 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (( I ↾ 𝑋) ∈ (𝐽 Cn 𝐾) ↔ (( I ↾ 𝑋):𝑋⟶𝑋 ∧ ∀𝑥 ∈ 𝐾 (◡( I ↾ 𝑋) “ 𝑥) ∈ 𝐽))) | |
| 2 | f1oi 5573 | . . . . 5 ⊢ ( I ↾ 𝑋):𝑋–1-1-onto→𝑋 | |
| 3 | f1of 5534 | . . . . 5 ⊢ (( I ↾ 𝑋):𝑋–1-1-onto→𝑋 → ( I ↾ 𝑋):𝑋⟶𝑋) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ( I ↾ 𝑋):𝑋⟶𝑋 |
| 5 | 4 | biantrur 303 | . . 3 ⊢ (∀𝑥 ∈ 𝐾 (◡( I ↾ 𝑋) “ 𝑥) ∈ 𝐽 ↔ (( I ↾ 𝑋):𝑋⟶𝑋 ∧ ∀𝑥 ∈ 𝐾 (◡( I ↾ 𝑋) “ 𝑥) ∈ 𝐽)) |
| 6 | 1, 5 | bitr4di 198 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (( I ↾ 𝑋) ∈ (𝐽 Cn 𝐾) ↔ ∀𝑥 ∈ 𝐾 (◡( I ↾ 𝑋) “ 𝑥) ∈ 𝐽)) |
| 7 | cnvresid 5357 | . . . . . . 7 ⊢ ◡( I ↾ 𝑋) = ( I ↾ 𝑋) | |
| 8 | 7 | imaeq1i 5028 | . . . . . 6 ⊢ (◡( I ↾ 𝑋) “ 𝑥) = (( I ↾ 𝑋) “ 𝑥) |
| 9 | elssuni 3884 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝐾 → 𝑥 ⊆ ∪ 𝐾) | |
| 10 | 9 | adantl 277 | . . . . . . . 8 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝑥 ∈ 𝐾) → 𝑥 ⊆ ∪ 𝐾) |
| 11 | toponuni 14562 | . . . . . . . . 9 ⊢ (𝐾 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐾) | |
| 12 | 11 | ad2antlr 489 | . . . . . . . 8 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝑥 ∈ 𝐾) → 𝑋 = ∪ 𝐾) |
| 13 | 10, 12 | sseqtrrd 3236 | . . . . . . 7 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝑥 ∈ 𝐾) → 𝑥 ⊆ 𝑋) |
| 14 | resiima 5049 | . . . . . . 7 ⊢ (𝑥 ⊆ 𝑋 → (( I ↾ 𝑋) “ 𝑥) = 𝑥) | |
| 15 | 13, 14 | syl 14 | . . . . . 6 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝑥 ∈ 𝐾) → (( I ↾ 𝑋) “ 𝑥) = 𝑥) |
| 16 | 8, 15 | eqtrid 2251 | . . . . 5 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝑥 ∈ 𝐾) → (◡( I ↾ 𝑋) “ 𝑥) = 𝑥) |
| 17 | 16 | eleq1d 2275 | . . . 4 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝑥 ∈ 𝐾) → ((◡( I ↾ 𝑋) “ 𝑥) ∈ 𝐽 ↔ 𝑥 ∈ 𝐽)) |
| 18 | 17 | ralbidva 2503 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (∀𝑥 ∈ 𝐾 (◡( I ↾ 𝑋) “ 𝑥) ∈ 𝐽 ↔ ∀𝑥 ∈ 𝐾 𝑥 ∈ 𝐽)) |
| 19 | dfss3 3186 | . . 3 ⊢ (𝐾 ⊆ 𝐽 ↔ ∀𝑥 ∈ 𝐾 𝑥 ∈ 𝐽) | |
| 20 | 18, 19 | bitr4di 198 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (∀𝑥 ∈ 𝐾 (◡( I ↾ 𝑋) “ 𝑥) ∈ 𝐽 ↔ 𝐾 ⊆ 𝐽)) |
| 21 | 6, 20 | bitrd 188 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (( I ↾ 𝑋) ∈ (𝐽 Cn 𝐾) ↔ 𝐾 ⊆ 𝐽)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 ∀wral 2485 ⊆ wss 3170 ∪ cuni 3856 I cid 4343 ◡ccnv 4682 ↾ cres 4685 “ cima 4686 ⟶wf 5276 –1-1-onto→wf1o 5279 ‘cfv 5280 (class class class)co 5957 TopOnctopon 14557 Cn ccn 14732 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-map 6750 df-top 14545 df-topon 14558 df-cn 14735 |
| This theorem is referenced by: idcn 14759 |
| Copyright terms: Public domain | W3C validator |