| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssidcn | GIF version | ||
| Description: The identity function is a continuous function from one topology to another topology on the same set iff the domain is finer than the codomain. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| ssidcn | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (( I ↾ 𝑋) ∈ (𝐽 Cn 𝐾) ↔ 𝐾 ⊆ 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscn 14865 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (( I ↾ 𝑋) ∈ (𝐽 Cn 𝐾) ↔ (( I ↾ 𝑋):𝑋⟶𝑋 ∧ ∀𝑥 ∈ 𝐾 (◡( I ↾ 𝑋) “ 𝑥) ∈ 𝐽))) | |
| 2 | f1oi 5610 | . . . . 5 ⊢ ( I ↾ 𝑋):𝑋–1-1-onto→𝑋 | |
| 3 | f1of 5571 | . . . . 5 ⊢ (( I ↾ 𝑋):𝑋–1-1-onto→𝑋 → ( I ↾ 𝑋):𝑋⟶𝑋) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ( I ↾ 𝑋):𝑋⟶𝑋 |
| 5 | 4 | biantrur 303 | . . 3 ⊢ (∀𝑥 ∈ 𝐾 (◡( I ↾ 𝑋) “ 𝑥) ∈ 𝐽 ↔ (( I ↾ 𝑋):𝑋⟶𝑋 ∧ ∀𝑥 ∈ 𝐾 (◡( I ↾ 𝑋) “ 𝑥) ∈ 𝐽)) |
| 6 | 1, 5 | bitr4di 198 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (( I ↾ 𝑋) ∈ (𝐽 Cn 𝐾) ↔ ∀𝑥 ∈ 𝐾 (◡( I ↾ 𝑋) “ 𝑥) ∈ 𝐽)) |
| 7 | cnvresid 5394 | . . . . . . 7 ⊢ ◡( I ↾ 𝑋) = ( I ↾ 𝑋) | |
| 8 | 7 | imaeq1i 5064 | . . . . . 6 ⊢ (◡( I ↾ 𝑋) “ 𝑥) = (( I ↾ 𝑋) “ 𝑥) |
| 9 | elssuni 3915 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝐾 → 𝑥 ⊆ ∪ 𝐾) | |
| 10 | 9 | adantl 277 | . . . . . . . 8 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝑥 ∈ 𝐾) → 𝑥 ⊆ ∪ 𝐾) |
| 11 | toponuni 14683 | . . . . . . . . 9 ⊢ (𝐾 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐾) | |
| 12 | 11 | ad2antlr 489 | . . . . . . . 8 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝑥 ∈ 𝐾) → 𝑋 = ∪ 𝐾) |
| 13 | 10, 12 | sseqtrrd 3263 | . . . . . . 7 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝑥 ∈ 𝐾) → 𝑥 ⊆ 𝑋) |
| 14 | resiima 5085 | . . . . . . 7 ⊢ (𝑥 ⊆ 𝑋 → (( I ↾ 𝑋) “ 𝑥) = 𝑥) | |
| 15 | 13, 14 | syl 14 | . . . . . 6 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝑥 ∈ 𝐾) → (( I ↾ 𝑋) “ 𝑥) = 𝑥) |
| 16 | 8, 15 | eqtrid 2274 | . . . . 5 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝑥 ∈ 𝐾) → (◡( I ↾ 𝑋) “ 𝑥) = 𝑥) |
| 17 | 16 | eleq1d 2298 | . . . 4 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝑥 ∈ 𝐾) → ((◡( I ↾ 𝑋) “ 𝑥) ∈ 𝐽 ↔ 𝑥 ∈ 𝐽)) |
| 18 | 17 | ralbidva 2526 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (∀𝑥 ∈ 𝐾 (◡( I ↾ 𝑋) “ 𝑥) ∈ 𝐽 ↔ ∀𝑥 ∈ 𝐾 𝑥 ∈ 𝐽)) |
| 19 | dfss3 3213 | . . 3 ⊢ (𝐾 ⊆ 𝐽 ↔ ∀𝑥 ∈ 𝐾 𝑥 ∈ 𝐽) | |
| 20 | 18, 19 | bitr4di 198 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (∀𝑥 ∈ 𝐾 (◡( I ↾ 𝑋) “ 𝑥) ∈ 𝐽 ↔ 𝐾 ⊆ 𝐽)) |
| 21 | 6, 20 | bitrd 188 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (( I ↾ 𝑋) ∈ (𝐽 Cn 𝐾) ↔ 𝐾 ⊆ 𝐽)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ∀wral 2508 ⊆ wss 3197 ∪ cuni 3887 I cid 4378 ◡ccnv 4717 ↾ cres 4720 “ cima 4721 ⟶wf 5313 –1-1-onto→wf1o 5316 ‘cfv 5317 (class class class)co 6000 TopOnctopon 14678 Cn ccn 14853 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-map 6795 df-top 14666 df-topon 14679 df-cn 14856 |
| This theorem is referenced by: idcn 14880 |
| Copyright terms: Public domain | W3C validator |