![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > subap0 | GIF version |
Description: Two numbers being apart is equivalent to their difference being apart from zero. (Contributed by Jim Kingdon, 25-Dec-2022.) |
Ref | Expression |
---|---|
subap0 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) # 0 ↔ 𝐴 # 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negcl 8157 | . . . 4 ⊢ (𝐵 ∈ ℂ → -𝐵 ∈ ℂ) | |
2 | 1 | adantl 277 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -𝐵 ∈ ℂ) |
3 | apadd1 8565 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ -𝐵 ∈ ℂ) → (𝐴 # 𝐵 ↔ (𝐴 + -𝐵) # (𝐵 + -𝐵))) | |
4 | 2, 3 | mpd3an3 1338 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 # 𝐵 ↔ (𝐴 + -𝐵) # (𝐵 + -𝐵))) |
5 | negsub 8205 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) | |
6 | simpr 110 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ) | |
7 | 6 | negidd 8258 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 + -𝐵) = 0) |
8 | 5, 7 | breq12d 4017 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + -𝐵) # (𝐵 + -𝐵) ↔ (𝐴 − 𝐵) # 0)) |
9 | 4, 8 | bitr2d 189 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) # 0 ↔ 𝐴 # 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2148 class class class wbr 4004 (class class class)co 5875 ℂcc 7809 0cc0 7811 + caddc 7814 − cmin 8128 -cneg 8129 # cap 8538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-setind 4537 ax-cnex 7902 ax-resscn 7903 ax-1cn 7904 ax-1re 7905 ax-icn 7906 ax-addcl 7907 ax-addrcl 7908 ax-mulcl 7909 ax-mulrcl 7910 ax-addcom 7911 ax-mulcom 7912 ax-addass 7913 ax-mulass 7914 ax-distr 7915 ax-i2m1 7916 ax-0lt1 7917 ax-1rid 7918 ax-0id 7919 ax-rnegex 7920 ax-precex 7921 ax-cnre 7922 ax-pre-ltirr 7923 ax-pre-lttrn 7925 ax-pre-apti 7926 ax-pre-ltadd 7927 ax-pre-mulgt0 7928 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2740 df-sbc 2964 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-br 4005 df-opab 4066 df-id 4294 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-iota 5179 df-fun 5219 df-fv 5225 df-riota 5831 df-ov 5878 df-oprab 5879 df-mpo 5880 df-pnf 7994 df-mnf 7995 df-ltxr 7997 df-sub 8130 df-neg 8131 df-reap 8532 df-ap 8539 |
This theorem is referenced by: subap0d 8601 tanaddaplem 11746 cnopnap 14097 reap0 14809 neap0mkv 14819 |
Copyright terms: Public domain | W3C validator |