ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  posdif GIF version

Theorem posdif 8414
Description: Comparison of two numbers whose difference is positive. (Contributed by NM, 17-Nov-2004.)
Assertion
Ref Expression
posdif ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))

Proof of Theorem posdif
StepHypRef Expression
1 resubcl 8223 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵𝐴) ∈ ℝ)
21ancoms 268 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵𝐴) ∈ ℝ)
3 simpl 109 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ)
4 ltaddpos 8411 . . 3 (((𝐵𝐴) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < (𝐵𝐴) ↔ 𝐴 < (𝐴 + (𝐵𝐴))))
52, 3, 4syl2anc 411 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < (𝐵𝐴) ↔ 𝐴 < (𝐴 + (𝐵𝐴))))
6 recn 7946 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
7 recn 7946 . . . 4 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
8 pncan3 8167 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + (𝐵𝐴)) = 𝐵)
96, 7, 8syl2an 289 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + (𝐵𝐴)) = 𝐵)
109breq2d 4017 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < (𝐴 + (𝐵𝐴)) ↔ 𝐴 < 𝐵))
115, 10bitr2d 189 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148   class class class wbr 4005  (class class class)co 5877  cc 7811  cr 7812  0cc0 7813   + caddc 7816   < clt 7994  cmin 8130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-ltxr 7999  df-sub 8132  df-neg 8133
This theorem is referenced by:  posdifi  8457  posdifd  8491  nnsub  8960  znnsub  9306  difrp  9694  xposdif  9884  eluzgtdifelfzo  10199  subfzo0  10244  efltim  11708  cos01gt0  11772  ndvdsadd  11938  nn0seqcvgd  12043  sinq12gt0  14290  cosq14gt0  14292  logdivlti  14341
  Copyright terms: Public domain W3C validator