Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > posdif | GIF version |
Description: Comparison of two numbers whose difference is positive. (Contributed by NM, 17-Nov-2004.) |
Ref | Expression |
---|---|
posdif | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵 − 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resubcl 8195 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 − 𝐴) ∈ ℝ) | |
2 | 1 | ancoms 268 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 − 𝐴) ∈ ℝ) |
3 | simpl 109 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ) | |
4 | ltaddpos 8383 | . . 3 ⊢ (((𝐵 − 𝐴) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < (𝐵 − 𝐴) ↔ 𝐴 < (𝐴 + (𝐵 − 𝐴)))) | |
5 | 2, 3, 4 | syl2anc 411 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < (𝐵 − 𝐴) ↔ 𝐴 < (𝐴 + (𝐵 − 𝐴)))) |
6 | recn 7919 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
7 | recn 7919 | . . . 4 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
8 | pncan3 8139 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + (𝐵 − 𝐴)) = 𝐵) | |
9 | 6, 7, 8 | syl2an 289 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + (𝐵 − 𝐴)) = 𝐵) |
10 | 9 | breq2d 4010 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < (𝐴 + (𝐵 − 𝐴)) ↔ 𝐴 < 𝐵)) |
11 | 5, 10 | bitr2d 189 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵 − 𝐴))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2146 class class class wbr 3998 (class class class)co 5865 ℂcc 7784 ℝcr 7785 0cc0 7786 + caddc 7789 < clt 7966 − cmin 8102 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-addass 7888 ax-distr 7890 ax-i2m1 7891 ax-0id 7894 ax-rnegex 7895 ax-cnre 7897 ax-pre-ltadd 7902 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-iota 5170 df-fun 5210 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-pnf 7968 df-mnf 7969 df-ltxr 7971 df-sub 8104 df-neg 8105 |
This theorem is referenced by: posdifi 8429 posdifd 8463 nnsub 8931 znnsub 9277 difrp 9663 xposdif 9853 eluzgtdifelfzo 10167 subfzo0 10212 efltim 11674 cos01gt0 11738 ndvdsadd 11903 nn0seqcvgd 12008 sinq12gt0 13831 cosq14gt0 13833 logdivlti 13882 |
Copyright terms: Public domain | W3C validator |