ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzrev2 GIF version

Theorem fzrev2 9872
Description: Reversal of start and end of a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.)
Assertion
Ref Expression
fzrev2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐽𝐾) ∈ ((𝐽𝑁)...(𝐽𝑀))))

Proof of Theorem fzrev2
StepHypRef Expression
1 simpl 108 . . . 4 ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝐽 ∈ ℤ)
2 zsubcl 9102 . . . 4 ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐽𝐾) ∈ ℤ)
31, 2jca 304 . . 3 ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐽 ∈ ℤ ∧ (𝐽𝐾) ∈ ℤ))
4 fzrev 9871 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ (𝐽𝐾) ∈ ℤ)) → ((𝐽𝐾) ∈ ((𝐽𝑁)...(𝐽𝑀)) ↔ (𝐽 − (𝐽𝐾)) ∈ (𝑀...𝑁)))
53, 4sylan2 284 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝐽𝐾) ∈ ((𝐽𝑁)...(𝐽𝑀)) ↔ (𝐽 − (𝐽𝐾)) ∈ (𝑀...𝑁)))
6 zcn 9066 . . . . 5 (𝐽 ∈ ℤ → 𝐽 ∈ ℂ)
7 zcn 9066 . . . . 5 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
8 nncan 7998 . . . . 5 ((𝐽 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝐽 − (𝐽𝐾)) = 𝐾)
96, 7, 8syl2an 287 . . . 4 ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐽 − (𝐽𝐾)) = 𝐾)
109adantl 275 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐽 − (𝐽𝐾)) = 𝐾)
1110eleq1d 2208 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝐽 − (𝐽𝐾)) ∈ (𝑀...𝑁) ↔ 𝐾 ∈ (𝑀...𝑁)))
125, 11bitr2d 188 1 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐽𝐾) ∈ ((𝐽𝑁)...(𝐽𝑀))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  (class class class)co 5774  cc 7625  cmin 7940  cz 9061  ...cfz 9797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-addcom 7727  ax-addass 7729  ax-distr 7731  ax-i2m1 7732  ax-0lt1 7733  ax-0id 7735  ax-rnegex 7736  ax-cnre 7738  ax-pre-ltirr 7739  ax-pre-ltwlin 7740  ax-pre-lttrn 7741  ax-pre-ltadd 7743
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813  df-sub 7942  df-neg 7943  df-inn 8728  df-n0 8985  df-z 9062  df-fz 9798
This theorem is referenced by:  fzrev2i  9873  fsumrev  11219
  Copyright terms: Public domain W3C validator