![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fzrev2 | GIF version |
Description: Reversal of start and end of a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.) |
Ref | Expression |
---|---|
fzrev2 | ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐽 − 𝐾) ∈ ((𝐽 − 𝑁)...(𝐽 − 𝑀)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 109 | . . . 4 ⊢ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝐽 ∈ ℤ) | |
2 | zsubcl 9358 | . . . 4 ⊢ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐽 − 𝐾) ∈ ℤ) | |
3 | 1, 2 | jca 306 | . . 3 ⊢ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐽 ∈ ℤ ∧ (𝐽 − 𝐾) ∈ ℤ)) |
4 | fzrev 10150 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ (𝐽 − 𝐾) ∈ ℤ)) → ((𝐽 − 𝐾) ∈ ((𝐽 − 𝑁)...(𝐽 − 𝑀)) ↔ (𝐽 − (𝐽 − 𝐾)) ∈ (𝑀...𝑁))) | |
5 | 3, 4 | sylan2 286 | . 2 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝐽 − 𝐾) ∈ ((𝐽 − 𝑁)...(𝐽 − 𝑀)) ↔ (𝐽 − (𝐽 − 𝐾)) ∈ (𝑀...𝑁))) |
6 | zcn 9322 | . . . . 5 ⊢ (𝐽 ∈ ℤ → 𝐽 ∈ ℂ) | |
7 | zcn 9322 | . . . . 5 ⊢ (𝐾 ∈ ℤ → 𝐾 ∈ ℂ) | |
8 | nncan 8248 | . . . . 5 ⊢ ((𝐽 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝐽 − (𝐽 − 𝐾)) = 𝐾) | |
9 | 6, 7, 8 | syl2an 289 | . . . 4 ⊢ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐽 − (𝐽 − 𝐾)) = 𝐾) |
10 | 9 | adantl 277 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐽 − (𝐽 − 𝐾)) = 𝐾) |
11 | 10 | eleq1d 2262 | . 2 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝐽 − (𝐽 − 𝐾)) ∈ (𝑀...𝑁) ↔ 𝐾 ∈ (𝑀...𝑁))) |
12 | 5, 11 | bitr2d 189 | 1 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐽 − 𝐾) ∈ ((𝐽 − 𝑁)...(𝐽 − 𝑀)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 (class class class)co 5918 ℂcc 7870 − cmin 8190 ℤcz 9317 ...cfz 10074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-inn 8983 df-n0 9241 df-z 9318 df-fz 10075 |
This theorem is referenced by: fzrev2i 10152 fsumrev 11586 fprodrev 11762 |
Copyright terms: Public domain | W3C validator |