| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fzrev2 | GIF version | ||
| Description: Reversal of start and end of a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.) |
| Ref | Expression |
|---|---|
| fzrev2 | ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐽 − 𝐾) ∈ ((𝐽 − 𝑁)...(𝐽 − 𝑀)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . . . 4 ⊢ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝐽 ∈ ℤ) | |
| 2 | zsubcl 9487 | . . . 4 ⊢ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐽 − 𝐾) ∈ ℤ) | |
| 3 | 1, 2 | jca 306 | . . 3 ⊢ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐽 ∈ ℤ ∧ (𝐽 − 𝐾) ∈ ℤ)) |
| 4 | fzrev 10280 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ (𝐽 − 𝐾) ∈ ℤ)) → ((𝐽 − 𝐾) ∈ ((𝐽 − 𝑁)...(𝐽 − 𝑀)) ↔ (𝐽 − (𝐽 − 𝐾)) ∈ (𝑀...𝑁))) | |
| 5 | 3, 4 | sylan2 286 | . 2 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝐽 − 𝐾) ∈ ((𝐽 − 𝑁)...(𝐽 − 𝑀)) ↔ (𝐽 − (𝐽 − 𝐾)) ∈ (𝑀...𝑁))) |
| 6 | zcn 9451 | . . . . 5 ⊢ (𝐽 ∈ ℤ → 𝐽 ∈ ℂ) | |
| 7 | zcn 9451 | . . . . 5 ⊢ (𝐾 ∈ ℤ → 𝐾 ∈ ℂ) | |
| 8 | nncan 8375 | . . . . 5 ⊢ ((𝐽 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝐽 − (𝐽 − 𝐾)) = 𝐾) | |
| 9 | 6, 7, 8 | syl2an 289 | . . . 4 ⊢ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐽 − (𝐽 − 𝐾)) = 𝐾) |
| 10 | 9 | adantl 277 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐽 − (𝐽 − 𝐾)) = 𝐾) |
| 11 | 10 | eleq1d 2298 | . 2 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝐽 − (𝐽 − 𝐾)) ∈ (𝑀...𝑁) ↔ 𝐾 ∈ (𝑀...𝑁))) |
| 12 | 5, 11 | bitr2d 189 | 1 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐽 − 𝐾) ∈ ((𝐽 − 𝑁)...(𝐽 − 𝑀)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 (class class class)co 6001 ℂcc 7997 − cmin 8317 ℤcz 9446 ...cfz 10204 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-inn 9111 df-n0 9370 df-z 9447 df-fz 10205 |
| This theorem is referenced by: fzrev2i 10282 fsumrev 11954 fprodrev 12130 |
| Copyright terms: Public domain | W3C validator |