ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzrev2 GIF version

Theorem fzrev2 10160
Description: Reversal of start and end of a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.)
Assertion
Ref Expression
fzrev2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐽𝐾) ∈ ((𝐽𝑁)...(𝐽𝑀))))

Proof of Theorem fzrev2
StepHypRef Expression
1 simpl 109 . . . 4 ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝐽 ∈ ℤ)
2 zsubcl 9367 . . . 4 ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐽𝐾) ∈ ℤ)
31, 2jca 306 . . 3 ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐽 ∈ ℤ ∧ (𝐽𝐾) ∈ ℤ))
4 fzrev 10159 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ (𝐽𝐾) ∈ ℤ)) → ((𝐽𝐾) ∈ ((𝐽𝑁)...(𝐽𝑀)) ↔ (𝐽 − (𝐽𝐾)) ∈ (𝑀...𝑁)))
53, 4sylan2 286 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝐽𝐾) ∈ ((𝐽𝑁)...(𝐽𝑀)) ↔ (𝐽 − (𝐽𝐾)) ∈ (𝑀...𝑁)))
6 zcn 9331 . . . . 5 (𝐽 ∈ ℤ → 𝐽 ∈ ℂ)
7 zcn 9331 . . . . 5 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
8 nncan 8255 . . . . 5 ((𝐽 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝐽 − (𝐽𝐾)) = 𝐾)
96, 7, 8syl2an 289 . . . 4 ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐽 − (𝐽𝐾)) = 𝐾)
109adantl 277 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐽 − (𝐽𝐾)) = 𝐾)
1110eleq1d 2265 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝐽 − (𝐽𝐾)) ∈ (𝑀...𝑁) ↔ 𝐾 ∈ (𝑀...𝑁)))
125, 11bitr2d 189 1 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐽𝐾) ∈ ((𝐽𝑁)...(𝐽𝑀))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  (class class class)co 5922  cc 7877  cmin 8197  cz 9326  ...cfz 10083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-fz 10084
This theorem is referenced by:  fzrev2i  10161  fsumrev  11608  fprodrev  11784
  Copyright terms: Public domain W3C validator