ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzrev2 GIF version

Theorem fzrev2 9858
Description: Reversal of start and end of a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.)
Assertion
Ref Expression
fzrev2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐽𝐾) ∈ ((𝐽𝑁)...(𝐽𝑀))))

Proof of Theorem fzrev2
StepHypRef Expression
1 simpl 108 . . . 4 ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝐽 ∈ ℤ)
2 zsubcl 9088 . . . 4 ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐽𝐾) ∈ ℤ)
31, 2jca 304 . . 3 ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐽 ∈ ℤ ∧ (𝐽𝐾) ∈ ℤ))
4 fzrev 9857 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ (𝐽𝐾) ∈ ℤ)) → ((𝐽𝐾) ∈ ((𝐽𝑁)...(𝐽𝑀)) ↔ (𝐽 − (𝐽𝐾)) ∈ (𝑀...𝑁)))
53, 4sylan2 284 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝐽𝐾) ∈ ((𝐽𝑁)...(𝐽𝑀)) ↔ (𝐽 − (𝐽𝐾)) ∈ (𝑀...𝑁)))
6 zcn 9052 . . . . 5 (𝐽 ∈ ℤ → 𝐽 ∈ ℂ)
7 zcn 9052 . . . . 5 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
8 nncan 7984 . . . . 5 ((𝐽 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝐽 − (𝐽𝐾)) = 𝐾)
96, 7, 8syl2an 287 . . . 4 ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐽 − (𝐽𝐾)) = 𝐾)
109adantl 275 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐽 − (𝐽𝐾)) = 𝐾)
1110eleq1d 2206 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝐽 − (𝐽𝐾)) ∈ (𝑀...𝑁) ↔ 𝐾 ∈ (𝑀...𝑁)))
125, 11bitr2d 188 1 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐽𝐾) ∈ ((𝐽𝑁)...(𝐽𝑀))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  (class class class)co 5767  cc 7611  cmin 7926  cz 9047  ...cfz 9783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-addcom 7713  ax-addass 7715  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-0id 7721  ax-rnegex 7722  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-ltadd 7729
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-br 3925  df-opab 3985  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-iota 5083  df-fun 5120  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-inn 8714  df-n0 8971  df-z 9048  df-fz 9784
This theorem is referenced by:  fzrev2i  9859  fsumrev  11205
  Copyright terms: Public domain W3C validator