Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iser3shft | GIF version |
Description: Index shift of the limit of an infinite series. (Contributed by Mario Carneiro, 6-Sep-2013.) (Revised by Jim Kingdon, 17-Oct-2022.) |
Ref | Expression |
---|---|
iser3shft.ex | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
iser3shft.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
iser3shft.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
iser3shft.fm | ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
iser3shft.pl | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
Ref | Expression |
---|---|
iser3shft | ⊢ (𝜑 → (seq𝑀( + , 𝐹) ⇝ 𝐴 ↔ seq(𝑀 + 𝑁)( + , (𝐹 shift 𝑁)) ⇝ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iser3shft.ex | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
2 | iser3shft.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | iser3shft.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
4 | 2, 3 | zaddcld 9317 | . . . . 5 ⊢ (𝜑 → (𝑀 + 𝑁) ∈ ℤ) |
5 | 2 | zcnd 9314 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
6 | 3 | zcnd 9314 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
7 | 5, 6 | pncand 8210 | . . . . . . . . 9 ⊢ (𝜑 → ((𝑀 + 𝑁) − 𝑁) = 𝑀) |
8 | 7 | fveq2d 5490 | . . . . . . . 8 ⊢ (𝜑 → (ℤ≥‘((𝑀 + 𝑁) − 𝑁)) = (ℤ≥‘𝑀)) |
9 | 8 | eleq2d 2236 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ (ℤ≥‘((𝑀 + 𝑁) − 𝑁)) ↔ 𝑥 ∈ (ℤ≥‘𝑀))) |
10 | 9 | pm5.32i 450 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘((𝑀 + 𝑁) − 𝑁))) ↔ (𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀))) |
11 | iser3shft.fm | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) | |
12 | 10, 11 | sylbi 120 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘((𝑀 + 𝑁) − 𝑁))) → (𝐹‘𝑥) ∈ 𝑆) |
13 | iser3shft.pl | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | |
14 | 1, 4, 3, 12, 13 | seq3shft 10780 | . . . 4 ⊢ (𝜑 → seq(𝑀 + 𝑁)( + , (𝐹 shift 𝑁)) = (seq((𝑀 + 𝑁) − 𝑁)( + , 𝐹) shift 𝑁)) |
15 | 7 | seqeq1d 10386 | . . . . 5 ⊢ (𝜑 → seq((𝑀 + 𝑁) − 𝑁)( + , 𝐹) = seq𝑀( + , 𝐹)) |
16 | 15 | oveq1d 5857 | . . . 4 ⊢ (𝜑 → (seq((𝑀 + 𝑁) − 𝑁)( + , 𝐹) shift 𝑁) = (seq𝑀( + , 𝐹) shift 𝑁)) |
17 | 14, 16 | eqtrd 2198 | . . 3 ⊢ (𝜑 → seq(𝑀 + 𝑁)( + , (𝐹 shift 𝑁)) = (seq𝑀( + , 𝐹) shift 𝑁)) |
18 | 17 | breq1d 3992 | . 2 ⊢ (𝜑 → (seq(𝑀 + 𝑁)( + , (𝐹 shift 𝑁)) ⇝ 𝐴 ↔ (seq𝑀( + , 𝐹) shift 𝑁) ⇝ 𝐴)) |
19 | seqex 10382 | . . 3 ⊢ seq𝑀( + , 𝐹) ∈ V | |
20 | climshft 11245 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ seq𝑀( + , 𝐹) ∈ V) → ((seq𝑀( + , 𝐹) shift 𝑁) ⇝ 𝐴 ↔ seq𝑀( + , 𝐹) ⇝ 𝐴)) | |
21 | 3, 19, 20 | sylancl 410 | . 2 ⊢ (𝜑 → ((seq𝑀( + , 𝐹) shift 𝑁) ⇝ 𝐴 ↔ seq𝑀( + , 𝐹) ⇝ 𝐴)) |
22 | 18, 21 | bitr2d 188 | 1 ⊢ (𝜑 → (seq𝑀( + , 𝐹) ⇝ 𝐴 ↔ seq(𝑀 + 𝑁)( + , (𝐹 shift 𝑁)) ⇝ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 2136 Vcvv 2726 class class class wbr 3982 ‘cfv 5188 (class class class)co 5842 + caddc 7756 − cmin 8069 ℤcz 9191 ℤ≥cuz 9466 seqcseq 10380 shift cshi 10756 ⇝ cli 11219 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 df-uz 9467 df-fz 9945 df-seqfrec 10381 df-shft 10757 df-clim 11220 |
This theorem is referenced by: isumshft 11431 |
Copyright terms: Public domain | W3C validator |