ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iser3shft GIF version

Theorem iser3shft 11707
Description: Index shift of the limit of an infinite series. (Contributed by Mario Carneiro, 6-Sep-2013.) (Revised by Jim Kingdon, 17-Oct-2022.)
Hypotheses
Ref Expression
iser3shft.ex (𝜑𝐹𝑉)
iser3shft.m (𝜑𝑀 ∈ ℤ)
iser3shft.n (𝜑𝑁 ∈ ℤ)
iser3shft.fm ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
iser3shft.pl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
Assertion
Ref Expression
iser3shft (𝜑 → (seq𝑀( + , 𝐹) ⇝ 𝐴 ↔ seq(𝑀 + 𝑁)( + , (𝐹 shift 𝑁)) ⇝ 𝐴))
Distinct variable groups:   𝑥, + ,𝑦   𝑥,𝐹,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem iser3shft
StepHypRef Expression
1 iser3shft.ex . . . . 5 (𝜑𝐹𝑉)
2 iser3shft.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
3 iser3shft.n . . . . . 6 (𝜑𝑁 ∈ ℤ)
42, 3zaddcld 9512 . . . . 5 (𝜑 → (𝑀 + 𝑁) ∈ ℤ)
52zcnd 9509 . . . . . . . . . 10 (𝜑𝑀 ∈ ℂ)
63zcnd 9509 . . . . . . . . . 10 (𝜑𝑁 ∈ ℂ)
75, 6pncand 8397 . . . . . . . . 9 (𝜑 → ((𝑀 + 𝑁) − 𝑁) = 𝑀)
87fveq2d 5590 . . . . . . . 8 (𝜑 → (ℤ‘((𝑀 + 𝑁) − 𝑁)) = (ℤ𝑀))
98eleq2d 2276 . . . . . . 7 (𝜑 → (𝑥 ∈ (ℤ‘((𝑀 + 𝑁) − 𝑁)) ↔ 𝑥 ∈ (ℤ𝑀)))
109pm5.32i 454 . . . . . 6 ((𝜑𝑥 ∈ (ℤ‘((𝑀 + 𝑁) − 𝑁))) ↔ (𝜑𝑥 ∈ (ℤ𝑀)))
11 iser3shft.fm . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
1210, 11sylbi 121 . . . . 5 ((𝜑𝑥 ∈ (ℤ‘((𝑀 + 𝑁) − 𝑁))) → (𝐹𝑥) ∈ 𝑆)
13 iser3shft.pl . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
141, 4, 3, 12, 13seq3shft 11199 . . . 4 (𝜑 → seq(𝑀 + 𝑁)( + , (𝐹 shift 𝑁)) = (seq((𝑀 + 𝑁) − 𝑁)( + , 𝐹) shift 𝑁))
157seqeq1d 10611 . . . . 5 (𝜑 → seq((𝑀 + 𝑁) − 𝑁)( + , 𝐹) = seq𝑀( + , 𝐹))
1615oveq1d 5969 . . . 4 (𝜑 → (seq((𝑀 + 𝑁) − 𝑁)( + , 𝐹) shift 𝑁) = (seq𝑀( + , 𝐹) shift 𝑁))
1714, 16eqtrd 2239 . . 3 (𝜑 → seq(𝑀 + 𝑁)( + , (𝐹 shift 𝑁)) = (seq𝑀( + , 𝐹) shift 𝑁))
1817breq1d 4058 . 2 (𝜑 → (seq(𝑀 + 𝑁)( + , (𝐹 shift 𝑁)) ⇝ 𝐴 ↔ (seq𝑀( + , 𝐹) shift 𝑁) ⇝ 𝐴))
19 seqex 10607 . . 3 seq𝑀( + , 𝐹) ∈ V
20 climshft 11665 . . 3 ((𝑁 ∈ ℤ ∧ seq𝑀( + , 𝐹) ∈ V) → ((seq𝑀( + , 𝐹) shift 𝑁) ⇝ 𝐴 ↔ seq𝑀( + , 𝐹) ⇝ 𝐴))
213, 19, 20sylancl 413 . 2 (𝜑 → ((seq𝑀( + , 𝐹) shift 𝑁) ⇝ 𝐴 ↔ seq𝑀( + , 𝐹) ⇝ 𝐴))
2218, 21bitr2d 189 1 (𝜑 → (seq𝑀( + , 𝐹) ⇝ 𝐴 ↔ seq(𝑀 + 𝑁)( + , (𝐹 shift 𝑁)) ⇝ 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2177  Vcvv 2773   class class class wbr 4048  cfv 5277  (class class class)co 5954   + caddc 7941  cmin 8256  cz 9385  cuz 9661  seqcseq 10605   shift cshi 11175  cli 11639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-iinf 4641  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-addcom 8038  ax-addass 8040  ax-distr 8042  ax-i2m1 8043  ax-0lt1 8044  ax-0id 8046  ax-rnegex 8047  ax-cnre 8049  ax-pre-ltirr 8050  ax-pre-ltwlin 8051  ax-pre-lttrn 8052  ax-pre-apti 8053  ax-pre-ltadd 8054
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-if 3574  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-tr 4148  df-id 4345  df-iord 4418  df-on 4420  df-ilim 4421  df-suc 4423  df-iom 4644  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-recs 6401  df-frec 6487  df-pnf 8122  df-mnf 8123  df-xr 8124  df-ltxr 8125  df-le 8126  df-sub 8258  df-neg 8259  df-inn 9050  df-n0 9309  df-z 9386  df-uz 9662  df-fz 10144  df-seqfrec 10606  df-shft 11176  df-clim 11640
This theorem is referenced by:  isumshft  11851
  Copyright terms: Public domain W3C validator