![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iser3shft | GIF version |
Description: Index shift of the limit of an infinite series. (Contributed by Mario Carneiro, 6-Sep-2013.) (Revised by Jim Kingdon, 17-Oct-2022.) |
Ref | Expression |
---|---|
iser3shft.ex | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
iser3shft.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
iser3shft.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
iser3shft.fm | ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
iser3shft.pl | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
Ref | Expression |
---|---|
iser3shft | ⊢ (𝜑 → (seq𝑀( + , 𝐹) ⇝ 𝐴 ↔ seq(𝑀 + 𝑁)( + , (𝐹 shift 𝑁)) ⇝ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iser3shft.ex | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
2 | iser3shft.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | iser3shft.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
4 | 2, 3 | zaddcld 9398 | . . . . 5 ⊢ (𝜑 → (𝑀 + 𝑁) ∈ ℤ) |
5 | 2 | zcnd 9395 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
6 | 3 | zcnd 9395 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
7 | 5, 6 | pncand 8288 | . . . . . . . . 9 ⊢ (𝜑 → ((𝑀 + 𝑁) − 𝑁) = 𝑀) |
8 | 7 | fveq2d 5534 | . . . . . . . 8 ⊢ (𝜑 → (ℤ≥‘((𝑀 + 𝑁) − 𝑁)) = (ℤ≥‘𝑀)) |
9 | 8 | eleq2d 2259 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ (ℤ≥‘((𝑀 + 𝑁) − 𝑁)) ↔ 𝑥 ∈ (ℤ≥‘𝑀))) |
10 | 9 | pm5.32i 454 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘((𝑀 + 𝑁) − 𝑁))) ↔ (𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀))) |
11 | iser3shft.fm | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) | |
12 | 10, 11 | sylbi 121 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘((𝑀 + 𝑁) − 𝑁))) → (𝐹‘𝑥) ∈ 𝑆) |
13 | iser3shft.pl | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | |
14 | 1, 4, 3, 12, 13 | seq3shft 10866 | . . . 4 ⊢ (𝜑 → seq(𝑀 + 𝑁)( + , (𝐹 shift 𝑁)) = (seq((𝑀 + 𝑁) − 𝑁)( + , 𝐹) shift 𝑁)) |
15 | 7 | seqeq1d 10470 | . . . . 5 ⊢ (𝜑 → seq((𝑀 + 𝑁) − 𝑁)( + , 𝐹) = seq𝑀( + , 𝐹)) |
16 | 15 | oveq1d 5906 | . . . 4 ⊢ (𝜑 → (seq((𝑀 + 𝑁) − 𝑁)( + , 𝐹) shift 𝑁) = (seq𝑀( + , 𝐹) shift 𝑁)) |
17 | 14, 16 | eqtrd 2222 | . . 3 ⊢ (𝜑 → seq(𝑀 + 𝑁)( + , (𝐹 shift 𝑁)) = (seq𝑀( + , 𝐹) shift 𝑁)) |
18 | 17 | breq1d 4028 | . 2 ⊢ (𝜑 → (seq(𝑀 + 𝑁)( + , (𝐹 shift 𝑁)) ⇝ 𝐴 ↔ (seq𝑀( + , 𝐹) shift 𝑁) ⇝ 𝐴)) |
19 | seqex 10466 | . . 3 ⊢ seq𝑀( + , 𝐹) ∈ V | |
20 | climshft 11331 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ seq𝑀( + , 𝐹) ∈ V) → ((seq𝑀( + , 𝐹) shift 𝑁) ⇝ 𝐴 ↔ seq𝑀( + , 𝐹) ⇝ 𝐴)) | |
21 | 3, 19, 20 | sylancl 413 | . 2 ⊢ (𝜑 → ((seq𝑀( + , 𝐹) shift 𝑁) ⇝ 𝐴 ↔ seq𝑀( + , 𝐹) ⇝ 𝐴)) |
22 | 18, 21 | bitr2d 189 | 1 ⊢ (𝜑 → (seq𝑀( + , 𝐹) ⇝ 𝐴 ↔ seq(𝑀 + 𝑁)( + , (𝐹 shift 𝑁)) ⇝ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2160 Vcvv 2752 class class class wbr 4018 ‘cfv 5231 (class class class)co 5891 + caddc 7833 − cmin 8147 ℤcz 9272 ℤ≥cuz 9547 seqcseq 10464 shift cshi 10842 ⇝ cli 11305 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-iinf 4602 ax-cnex 7921 ax-resscn 7922 ax-1cn 7923 ax-1re 7924 ax-icn 7925 ax-addcl 7926 ax-addrcl 7927 ax-mulcl 7928 ax-addcom 7930 ax-addass 7932 ax-distr 7934 ax-i2m1 7935 ax-0lt1 7936 ax-0id 7938 ax-rnegex 7939 ax-cnre 7941 ax-pre-ltirr 7942 ax-pre-ltwlin 7943 ax-pre-lttrn 7944 ax-pre-apti 7945 ax-pre-ltadd 7946 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-if 3550 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-id 4308 df-iord 4381 df-on 4383 df-ilim 4384 df-suc 4386 df-iom 4605 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-ima 4654 df-iota 5193 df-fun 5233 df-fn 5234 df-f 5235 df-f1 5236 df-fo 5237 df-f1o 5238 df-fv 5239 df-riota 5847 df-ov 5894 df-oprab 5895 df-mpo 5896 df-1st 6159 df-2nd 6160 df-recs 6324 df-frec 6410 df-pnf 8013 df-mnf 8014 df-xr 8015 df-ltxr 8016 df-le 8017 df-sub 8149 df-neg 8150 df-inn 8939 df-n0 9196 df-z 9273 df-uz 9548 df-fz 10028 df-seqfrec 10465 df-shft 10843 df-clim 11306 |
This theorem is referenced by: isumshft 11517 |
Copyright terms: Public domain | W3C validator |