ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iser3shft GIF version

Theorem iser3shft 10789
Description: Index shift of the limit of an infinite series. (Contributed by Mario Carneiro, 6-Sep-2013.) (Revised by Jim Kingdon, 17-Oct-2022.)
Hypotheses
Ref Expression
iser3shft.ex (𝜑𝐹𝑉)
iser3shft.m (𝜑𝑀 ∈ ℤ)
iser3shft.n (𝜑𝑁 ∈ ℤ)
iser3shft.fm ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
iser3shft.pl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
Assertion
Ref Expression
iser3shft (𝜑 → (seq𝑀( + , 𝐹) ⇝ 𝐴 ↔ seq(𝑀 + 𝑁)( + , (𝐹 shift 𝑁)) ⇝ 𝐴))
Distinct variable groups:   𝑥, + ,𝑦   𝑥,𝐹,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem iser3shft
StepHypRef Expression
1 iser3shft.ex . . . . 5 (𝜑𝐹𝑉)
2 iser3shft.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
3 iser3shft.n . . . . . 6 (𝜑𝑁 ∈ ℤ)
42, 3zaddcld 8926 . . . . 5 (𝜑 → (𝑀 + 𝑁) ∈ ℤ)
52zcnd 8923 . . . . . . . . . 10 (𝜑𝑀 ∈ ℂ)
63zcnd 8923 . . . . . . . . . 10 (𝜑𝑁 ∈ ℂ)
75, 6pncand 7848 . . . . . . . . 9 (𝜑 → ((𝑀 + 𝑁) − 𝑁) = 𝑀)
87fveq2d 5322 . . . . . . . 8 (𝜑 → (ℤ‘((𝑀 + 𝑁) − 𝑁)) = (ℤ𝑀))
98eleq2d 2158 . . . . . . 7 (𝜑 → (𝑥 ∈ (ℤ‘((𝑀 + 𝑁) − 𝑁)) ↔ 𝑥 ∈ (ℤ𝑀)))
109pm5.32i 443 . . . . . 6 ((𝜑𝑥 ∈ (ℤ‘((𝑀 + 𝑁) − 𝑁))) ↔ (𝜑𝑥 ∈ (ℤ𝑀)))
11 iser3shft.fm . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
1210, 11sylbi 120 . . . . 5 ((𝜑𝑥 ∈ (ℤ‘((𝑀 + 𝑁) − 𝑁))) → (𝐹𝑥) ∈ 𝑆)
13 iser3shft.pl . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
141, 4, 3, 12, 13seq3shft 10326 . . . 4 (𝜑 → seq(𝑀 + 𝑁)( + , (𝐹 shift 𝑁)) = (seq((𝑀 + 𝑁) − 𝑁)( + , 𝐹) shift 𝑁))
157seqeq1d 9918 . . . . 5 (𝜑 → seq((𝑀 + 𝑁) − 𝑁)( + , 𝐹) = seq𝑀( + , 𝐹))
1615oveq1d 5681 . . . 4 (𝜑 → (seq((𝑀 + 𝑁) − 𝑁)( + , 𝐹) shift 𝑁) = (seq𝑀( + , 𝐹) shift 𝑁))
1714, 16eqtrd 2121 . . 3 (𝜑 → seq(𝑀 + 𝑁)( + , (𝐹 shift 𝑁)) = (seq𝑀( + , 𝐹) shift 𝑁))
1817breq1d 3861 . 2 (𝜑 → (seq(𝑀 + 𝑁)( + , (𝐹 shift 𝑁)) ⇝ 𝐴 ↔ (seq𝑀( + , 𝐹) shift 𝑁) ⇝ 𝐴))
19 seqex 9911 . . 3 seq𝑀( + , 𝐹) ∈ V
20 climshft 10746 . . 3 ((𝑁 ∈ ℤ ∧ seq𝑀( + , 𝐹) ∈ V) → ((seq𝑀( + , 𝐹) shift 𝑁) ⇝ 𝐴 ↔ seq𝑀( + , 𝐹) ⇝ 𝐴))
213, 19, 20sylancl 405 . 2 (𝜑 → ((seq𝑀( + , 𝐹) shift 𝑁) ⇝ 𝐴 ↔ seq𝑀( + , 𝐹) ⇝ 𝐴))
2218, 21bitr2d 188 1 (𝜑 → (seq𝑀( + , 𝐹) ⇝ 𝐴 ↔ seq(𝑀 + 𝑁)( + , (𝐹 shift 𝑁)) ⇝ 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wcel 1439  Vcvv 2620   class class class wbr 3851  cfv 5028  (class class class)co 5666   + caddc 7407  cmin 7707  cz 8804  cuz 9073  seqcseq 9906   shift cshi 10302  cli 10720
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3960  ax-sep 3963  ax-nul 3971  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-iinf 4416  ax-cnex 7490  ax-resscn 7491  ax-1cn 7492  ax-1re 7493  ax-icn 7494  ax-addcl 7495  ax-addrcl 7496  ax-mulcl 7497  ax-addcom 7499  ax-addass 7501  ax-distr 7503  ax-i2m1 7504  ax-0lt1 7505  ax-0id 7507  ax-rnegex 7508  ax-cnre 7510  ax-pre-ltirr 7511  ax-pre-ltwlin 7512  ax-pre-lttrn 7513  ax-pre-apti 7514  ax-pre-ltadd 7515
This theorem depends on definitions:  df-bi 116  df-dc 782  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-if 3398  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-iun 3738  df-br 3852  df-opab 3906  df-mpt 3907  df-tr 3943  df-id 4129  df-iord 4202  df-on 4204  df-ilim 4205  df-suc 4207  df-iom 4419  df-xp 4457  df-rel 4458  df-cnv 4459  df-co 4460  df-dm 4461  df-rn 4462  df-res 4463  df-ima 4464  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-1st 5925  df-2nd 5926  df-recs 6084  df-frec 6170  df-pnf 7578  df-mnf 7579  df-xr 7580  df-ltxr 7581  df-le 7582  df-sub 7709  df-neg 7710  df-inn 8477  df-n0 8728  df-z 8805  df-uz 9074  df-fz 9479  df-iseq 9907  df-seq3 9908  df-shft 10303  df-clim 10721
This theorem is referenced by:  isumshft  10938
  Copyright terms: Public domain W3C validator