ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iser3shft GIF version

Theorem iser3shft 11115
Description: Index shift of the limit of an infinite series. (Contributed by Mario Carneiro, 6-Sep-2013.) (Revised by Jim Kingdon, 17-Oct-2022.)
Hypotheses
Ref Expression
iser3shft.ex (𝜑𝐹𝑉)
iser3shft.m (𝜑𝑀 ∈ ℤ)
iser3shft.n (𝜑𝑁 ∈ ℤ)
iser3shft.fm ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
iser3shft.pl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
Assertion
Ref Expression
iser3shft (𝜑 → (seq𝑀( + , 𝐹) ⇝ 𝐴 ↔ seq(𝑀 + 𝑁)( + , (𝐹 shift 𝑁)) ⇝ 𝐴))
Distinct variable groups:   𝑥, + ,𝑦   𝑥,𝐹,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem iser3shft
StepHypRef Expression
1 iser3shft.ex . . . . 5 (𝜑𝐹𝑉)
2 iser3shft.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
3 iser3shft.n . . . . . 6 (𝜑𝑁 ∈ ℤ)
42, 3zaddcld 9177 . . . . 5 (𝜑 → (𝑀 + 𝑁) ∈ ℤ)
52zcnd 9174 . . . . . . . . . 10 (𝜑𝑀 ∈ ℂ)
63zcnd 9174 . . . . . . . . . 10 (𝜑𝑁 ∈ ℂ)
75, 6pncand 8074 . . . . . . . . 9 (𝜑 → ((𝑀 + 𝑁) − 𝑁) = 𝑀)
87fveq2d 5425 . . . . . . . 8 (𝜑 → (ℤ‘((𝑀 + 𝑁) − 𝑁)) = (ℤ𝑀))
98eleq2d 2209 . . . . . . 7 (𝜑 → (𝑥 ∈ (ℤ‘((𝑀 + 𝑁) − 𝑁)) ↔ 𝑥 ∈ (ℤ𝑀)))
109pm5.32i 449 . . . . . 6 ((𝜑𝑥 ∈ (ℤ‘((𝑀 + 𝑁) − 𝑁))) ↔ (𝜑𝑥 ∈ (ℤ𝑀)))
11 iser3shft.fm . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
1210, 11sylbi 120 . . . . 5 ((𝜑𝑥 ∈ (ℤ‘((𝑀 + 𝑁) − 𝑁))) → (𝐹𝑥) ∈ 𝑆)
13 iser3shft.pl . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
141, 4, 3, 12, 13seq3shft 10610 . . . 4 (𝜑 → seq(𝑀 + 𝑁)( + , (𝐹 shift 𝑁)) = (seq((𝑀 + 𝑁) − 𝑁)( + , 𝐹) shift 𝑁))
157seqeq1d 10224 . . . . 5 (𝜑 → seq((𝑀 + 𝑁) − 𝑁)( + , 𝐹) = seq𝑀( + , 𝐹))
1615oveq1d 5789 . . . 4 (𝜑 → (seq((𝑀 + 𝑁) − 𝑁)( + , 𝐹) shift 𝑁) = (seq𝑀( + , 𝐹) shift 𝑁))
1714, 16eqtrd 2172 . . 3 (𝜑 → seq(𝑀 + 𝑁)( + , (𝐹 shift 𝑁)) = (seq𝑀( + , 𝐹) shift 𝑁))
1817breq1d 3939 . 2 (𝜑 → (seq(𝑀 + 𝑁)( + , (𝐹 shift 𝑁)) ⇝ 𝐴 ↔ (seq𝑀( + , 𝐹) shift 𝑁) ⇝ 𝐴))
19 seqex 10220 . . 3 seq𝑀( + , 𝐹) ∈ V
20 climshft 11073 . . 3 ((𝑁 ∈ ℤ ∧ seq𝑀( + , 𝐹) ∈ V) → ((seq𝑀( + , 𝐹) shift 𝑁) ⇝ 𝐴 ↔ seq𝑀( + , 𝐹) ⇝ 𝐴))
213, 19, 20sylancl 409 . 2 (𝜑 → ((seq𝑀( + , 𝐹) shift 𝑁) ⇝ 𝐴 ↔ seq𝑀( + , 𝐹) ⇝ 𝐴))
2218, 21bitr2d 188 1 (𝜑 → (seq𝑀( + , 𝐹) ⇝ 𝐴 ↔ seq(𝑀 + 𝑁)( + , (𝐹 shift 𝑁)) ⇝ 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wcel 1480  Vcvv 2686   class class class wbr 3929  cfv 5123  (class class class)co 5774   + caddc 7623  cmin 7933  cz 9054  cuz 9326  seqcseq 10218   shift cshi 10586  cli 11047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055  df-uz 9327  df-fz 9791  df-seqfrec 10219  df-shft 10587  df-clim 11048
This theorem is referenced by:  isumshft  11259
  Copyright terms: Public domain W3C validator