| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iser3shft | GIF version | ||
| Description: Index shift of the limit of an infinite series. (Contributed by Mario Carneiro, 6-Sep-2013.) (Revised by Jim Kingdon, 17-Oct-2022.) |
| Ref | Expression |
|---|---|
| iser3shft.ex | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| iser3shft.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| iser3shft.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| iser3shft.fm | ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
| iser3shft.pl | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
| Ref | Expression |
|---|---|
| iser3shft | ⊢ (𝜑 → (seq𝑀( + , 𝐹) ⇝ 𝐴 ↔ seq(𝑀 + 𝑁)( + , (𝐹 shift 𝑁)) ⇝ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iser3shft.ex | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 2 | iser3shft.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 3 | iser3shft.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 4 | 2, 3 | zaddcld 9581 | . . . . 5 ⊢ (𝜑 → (𝑀 + 𝑁) ∈ ℤ) |
| 5 | 2 | zcnd 9578 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
| 6 | 3 | zcnd 9578 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 7 | 5, 6 | pncand 8466 | . . . . . . . . 9 ⊢ (𝜑 → ((𝑀 + 𝑁) − 𝑁) = 𝑀) |
| 8 | 7 | fveq2d 5633 | . . . . . . . 8 ⊢ (𝜑 → (ℤ≥‘((𝑀 + 𝑁) − 𝑁)) = (ℤ≥‘𝑀)) |
| 9 | 8 | eleq2d 2299 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ (ℤ≥‘((𝑀 + 𝑁) − 𝑁)) ↔ 𝑥 ∈ (ℤ≥‘𝑀))) |
| 10 | 9 | pm5.32i 454 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘((𝑀 + 𝑁) − 𝑁))) ↔ (𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀))) |
| 11 | iser3shft.fm | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) | |
| 12 | 10, 11 | sylbi 121 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘((𝑀 + 𝑁) − 𝑁))) → (𝐹‘𝑥) ∈ 𝑆) |
| 13 | iser3shft.pl | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | |
| 14 | 1, 4, 3, 12, 13 | seq3shft 11357 | . . . 4 ⊢ (𝜑 → seq(𝑀 + 𝑁)( + , (𝐹 shift 𝑁)) = (seq((𝑀 + 𝑁) − 𝑁)( + , 𝐹) shift 𝑁)) |
| 15 | 7 | seqeq1d 10683 | . . . . 5 ⊢ (𝜑 → seq((𝑀 + 𝑁) − 𝑁)( + , 𝐹) = seq𝑀( + , 𝐹)) |
| 16 | 15 | oveq1d 6022 | . . . 4 ⊢ (𝜑 → (seq((𝑀 + 𝑁) − 𝑁)( + , 𝐹) shift 𝑁) = (seq𝑀( + , 𝐹) shift 𝑁)) |
| 17 | 14, 16 | eqtrd 2262 | . . 3 ⊢ (𝜑 → seq(𝑀 + 𝑁)( + , (𝐹 shift 𝑁)) = (seq𝑀( + , 𝐹) shift 𝑁)) |
| 18 | 17 | breq1d 4093 | . 2 ⊢ (𝜑 → (seq(𝑀 + 𝑁)( + , (𝐹 shift 𝑁)) ⇝ 𝐴 ↔ (seq𝑀( + , 𝐹) shift 𝑁) ⇝ 𝐴)) |
| 19 | seqex 10679 | . . 3 ⊢ seq𝑀( + , 𝐹) ∈ V | |
| 20 | climshft 11823 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ seq𝑀( + , 𝐹) ∈ V) → ((seq𝑀( + , 𝐹) shift 𝑁) ⇝ 𝐴 ↔ seq𝑀( + , 𝐹) ⇝ 𝐴)) | |
| 21 | 3, 19, 20 | sylancl 413 | . 2 ⊢ (𝜑 → ((seq𝑀( + , 𝐹) shift 𝑁) ⇝ 𝐴 ↔ seq𝑀( + , 𝐹) ⇝ 𝐴)) |
| 22 | 18, 21 | bitr2d 189 | 1 ⊢ (𝜑 → (seq𝑀( + , 𝐹) ⇝ 𝐴 ↔ seq(𝑀 + 𝑁)( + , (𝐹 shift 𝑁)) ⇝ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2200 Vcvv 2799 class class class wbr 4083 ‘cfv 5318 (class class class)co 6007 + caddc 8010 − cmin 8325 ℤcz 9454 ℤ≥cuz 9730 seqcseq 10677 shift cshi 11333 ⇝ cli 11797 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-addass 8109 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-frec 6543 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-inn 9119 df-n0 9378 df-z 9455 df-uz 9731 df-fz 10213 df-seqfrec 10678 df-shft 11334 df-clim 11798 |
| This theorem is referenced by: isumshft 12009 |
| Copyright terms: Public domain | W3C validator |