ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcopeq1a GIF version

Theorem sbcopeq1a 6155
Description: Equality theorem for substitution of a class for an ordered pair (analog of sbceq1a 2960 that avoids the existential quantifiers of copsexg 4222). (Contributed by NM, 19-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
sbcopeq1a (𝐴 = ⟨𝑥, 𝑦⟩ → ([(1st𝐴) / 𝑥][(2nd𝐴) / 𝑦]𝜑𝜑))

Proof of Theorem sbcopeq1a
StepHypRef Expression
1 vex 2729 . . . . 5 𝑥 ∈ V
2 vex 2729 . . . . 5 𝑦 ∈ V
31, 2op2ndd 6117 . . . 4 (𝐴 = ⟨𝑥, 𝑦⟩ → (2nd𝐴) = 𝑦)
43eqcomd 2171 . . 3 (𝐴 = ⟨𝑥, 𝑦⟩ → 𝑦 = (2nd𝐴))
5 sbceq1a 2960 . . 3 (𝑦 = (2nd𝐴) → (𝜑[(2nd𝐴) / 𝑦]𝜑))
64, 5syl 14 . 2 (𝐴 = ⟨𝑥, 𝑦⟩ → (𝜑[(2nd𝐴) / 𝑦]𝜑))
71, 2op1std 6116 . . . 4 (𝐴 = ⟨𝑥, 𝑦⟩ → (1st𝐴) = 𝑥)
87eqcomd 2171 . . 3 (𝐴 = ⟨𝑥, 𝑦⟩ → 𝑥 = (1st𝐴))
9 sbceq1a 2960 . . 3 (𝑥 = (1st𝐴) → ([(2nd𝐴) / 𝑦]𝜑[(1st𝐴) / 𝑥][(2nd𝐴) / 𝑦]𝜑))
108, 9syl 14 . 2 (𝐴 = ⟨𝑥, 𝑦⟩ → ([(2nd𝐴) / 𝑦]𝜑[(1st𝐴) / 𝑥][(2nd𝐴) / 𝑦]𝜑))
116, 10bitr2d 188 1 (𝐴 = ⟨𝑥, 𝑦⟩ → ([(1st𝐴) / 𝑥][(2nd𝐴) / 𝑦]𝜑𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1343  [wsbc 2951  cop 3579  cfv 5188  1st c1st 6106  2nd c2nd 6107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fv 5196  df-1st 6108  df-2nd 6109
This theorem is referenced by:  dfopab2  6157  dfoprab3s  6158
  Copyright terms: Public domain W3C validator