![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbcopeq1a | GIF version |
Description: Equality theorem for substitution of a class for an ordered pair (analog of sbceq1a 2850 that avoids the existential quantifiers of copsexg 4080). (Contributed by NM, 19-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
sbcopeq1a | ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ([(1st ‘𝐴) / 𝑥][(2nd ‘𝐴) / 𝑦]𝜑 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2623 | . . . . 5 ⊢ 𝑥 ∈ V | |
2 | vex 2623 | . . . . 5 ⊢ 𝑦 ∈ V | |
3 | 1, 2 | op2ndd 5934 | . . . 4 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (2nd ‘𝐴) = 𝑦) |
4 | 3 | eqcomd 2094 | . . 3 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → 𝑦 = (2nd ‘𝐴)) |
5 | sbceq1a 2850 | . . 3 ⊢ (𝑦 = (2nd ‘𝐴) → (𝜑 ↔ [(2nd ‘𝐴) / 𝑦]𝜑)) | |
6 | 4, 5 | syl 14 | . 2 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (𝜑 ↔ [(2nd ‘𝐴) / 𝑦]𝜑)) |
7 | 1, 2 | op1std 5933 | . . . 4 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (1st ‘𝐴) = 𝑥) |
8 | 7 | eqcomd 2094 | . . 3 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → 𝑥 = (1st ‘𝐴)) |
9 | sbceq1a 2850 | . . 3 ⊢ (𝑥 = (1st ‘𝐴) → ([(2nd ‘𝐴) / 𝑦]𝜑 ↔ [(1st ‘𝐴) / 𝑥][(2nd ‘𝐴) / 𝑦]𝜑)) | |
10 | 8, 9 | syl 14 | . 2 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ([(2nd ‘𝐴) / 𝑦]𝜑 ↔ [(1st ‘𝐴) / 𝑥][(2nd ‘𝐴) / 𝑦]𝜑)) |
11 | 6, 10 | bitr2d 188 | 1 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ([(1st ‘𝐴) / 𝑥][(2nd ‘𝐴) / 𝑦]𝜑 ↔ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1290 [wsbc 2841 〈cop 3453 ‘cfv 5028 1st c1st 5923 2nd c2nd 5924 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-13 1450 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3963 ax-pow 4015 ax-pr 4045 ax-un 4269 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ral 2365 df-rex 2366 df-v 2622 df-sbc 2842 df-un 3004 df-in 3006 df-ss 3013 df-pw 3435 df-sn 3456 df-pr 3457 df-op 3459 df-uni 3660 df-br 3852 df-opab 3906 df-mpt 3907 df-id 4129 df-xp 4457 df-rel 4458 df-cnv 4459 df-co 4460 df-dm 4461 df-rn 4462 df-iota 4993 df-fun 5030 df-fv 5036 df-1st 5925 df-2nd 5926 |
This theorem is referenced by: dfopab2 5973 dfoprab3s 5974 |
Copyright terms: Public domain | W3C validator |