Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbcopeq1a | GIF version |
Description: Equality theorem for substitution of a class for an ordered pair (analog of sbceq1a 2960 that avoids the existential quantifiers of copsexg 4222). (Contributed by NM, 19-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
sbcopeq1a | ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ([(1st ‘𝐴) / 𝑥][(2nd ‘𝐴) / 𝑦]𝜑 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2729 | . . . . 5 ⊢ 𝑥 ∈ V | |
2 | vex 2729 | . . . . 5 ⊢ 𝑦 ∈ V | |
3 | 1, 2 | op2ndd 6117 | . . . 4 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (2nd ‘𝐴) = 𝑦) |
4 | 3 | eqcomd 2171 | . . 3 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → 𝑦 = (2nd ‘𝐴)) |
5 | sbceq1a 2960 | . . 3 ⊢ (𝑦 = (2nd ‘𝐴) → (𝜑 ↔ [(2nd ‘𝐴) / 𝑦]𝜑)) | |
6 | 4, 5 | syl 14 | . 2 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (𝜑 ↔ [(2nd ‘𝐴) / 𝑦]𝜑)) |
7 | 1, 2 | op1std 6116 | . . . 4 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (1st ‘𝐴) = 𝑥) |
8 | 7 | eqcomd 2171 | . . 3 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → 𝑥 = (1st ‘𝐴)) |
9 | sbceq1a 2960 | . . 3 ⊢ (𝑥 = (1st ‘𝐴) → ([(2nd ‘𝐴) / 𝑦]𝜑 ↔ [(1st ‘𝐴) / 𝑥][(2nd ‘𝐴) / 𝑦]𝜑)) | |
10 | 8, 9 | syl 14 | . 2 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ([(2nd ‘𝐴) / 𝑦]𝜑 ↔ [(1st ‘𝐴) / 𝑥][(2nd ‘𝐴) / 𝑦]𝜑)) |
11 | 6, 10 | bitr2d 188 | 1 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ([(1st ‘𝐴) / 𝑥][(2nd ‘𝐴) / 𝑦]𝜑 ↔ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1343 [wsbc 2951 〈cop 3579 ‘cfv 5188 1st c1st 6106 2nd c2nd 6107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fv 5196 df-1st 6108 df-2nd 6109 |
This theorem is referenced by: dfopab2 6157 dfoprab3s 6158 |
Copyright terms: Public domain | W3C validator |