| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbcopeq1a | GIF version | ||
| Description: Equality theorem for substitution of a class for an ordered pair (analog of sbceq1a 3009 that avoids the existential quantifiers of copsexg 4292). (Contributed by NM, 19-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| sbcopeq1a | ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ([(1st ‘𝐴) / 𝑥][(2nd ‘𝐴) / 𝑦]𝜑 ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2776 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 2 | vex 2776 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 3 | 1, 2 | op2ndd 6242 | . . . 4 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (2nd ‘𝐴) = 𝑦) |
| 4 | 3 | eqcomd 2212 | . . 3 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → 𝑦 = (2nd ‘𝐴)) |
| 5 | sbceq1a 3009 | . . 3 ⊢ (𝑦 = (2nd ‘𝐴) → (𝜑 ↔ [(2nd ‘𝐴) / 𝑦]𝜑)) | |
| 6 | 4, 5 | syl 14 | . 2 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (𝜑 ↔ [(2nd ‘𝐴) / 𝑦]𝜑)) |
| 7 | 1, 2 | op1std 6241 | . . . 4 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (1st ‘𝐴) = 𝑥) |
| 8 | 7 | eqcomd 2212 | . . 3 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → 𝑥 = (1st ‘𝐴)) |
| 9 | sbceq1a 3009 | . . 3 ⊢ (𝑥 = (1st ‘𝐴) → ([(2nd ‘𝐴) / 𝑦]𝜑 ↔ [(1st ‘𝐴) / 𝑥][(2nd ‘𝐴) / 𝑦]𝜑)) | |
| 10 | 8, 9 | syl 14 | . 2 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ([(2nd ‘𝐴) / 𝑦]𝜑 ↔ [(1st ‘𝐴) / 𝑥][(2nd ‘𝐴) / 𝑦]𝜑)) |
| 11 | 6, 10 | bitr2d 189 | 1 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ([(1st ‘𝐴) / 𝑥][(2nd ‘𝐴) / 𝑦]𝜑 ↔ 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 [wsbc 2999 〈cop 3637 ‘cfv 5276 1st c1st 6231 2nd c2nd 6232 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3000 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-iota 5237 df-fun 5278 df-fv 5284 df-1st 6233 df-2nd 6234 |
| This theorem is referenced by: dfopab2 6282 dfoprab3s 6283 |
| Copyright terms: Public domain | W3C validator |