ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zltlem1 GIF version

Theorem zltlem1 9312
Description: Integer ordering relation. (Contributed by NM, 13-Nov-2004.)
Assertion
Ref Expression
zltlem1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁𝑀 ≤ (𝑁 − 1)))

Proof of Theorem zltlem1
StepHypRef Expression
1 peano2zm 9293 . . 3 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
2 zleltp1 9310 . . 3 ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → (𝑀 ≤ (𝑁 − 1) ↔ 𝑀 < ((𝑁 − 1) + 1)))
31, 2sylan2 286 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ (𝑁 − 1) ↔ 𝑀 < ((𝑁 − 1) + 1)))
4 zcn 9260 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
5 ax-1cn 7906 . . . . 5 1 ∈ ℂ
6 npcan 8168 . . . . 5 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
74, 5, 6sylancl 413 . . . 4 (𝑁 ∈ ℤ → ((𝑁 − 1) + 1) = 𝑁)
87adantl 277 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 − 1) + 1) = 𝑁)
98breq2d 4017 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < ((𝑁 − 1) + 1) ↔ 𝑀 < 𝑁))
103, 9bitr2d 189 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁𝑀 ≤ (𝑁 − 1)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148   class class class wbr 4005  (class class class)co 5877  cc 7811  1c1 7814   + caddc 7816   < clt 7994  cle 7995  cmin 8130  cz 9255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-n0 9179  df-z 9256
This theorem is referenced by:  nn0ltlem1  9319  nn0lt2  9336  nn0le2is012  9337  nnltlem1  9340  nnm1ge0  9341  zextlt  9347  uzm1  9560  elfzm11  10093  elfzo  10151  fzosplitprm1  10236  intfracq  10322  iseqf1olemqcl  10488  iseqf1olemnab  10490  iseqf1olemab  10491  seq3f1olemqsumkj  10500  seq3f1olemqsum  10502  seq3coll  10824  fzm1ndvds  11864  nn0seqcvgd  12043  isprm3  12120  isprm5lem  12143  isprm5  12144  pw2dvds  12168  prmdiveq  12238  lgseisenlem2  14490  2sqlem8  14509
  Copyright terms: Public domain W3C validator