ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zltlem1 GIF version

Theorem zltlem1 8861
Description: Integer ordering relation. (Contributed by NM, 13-Nov-2004.)
Assertion
Ref Expression
zltlem1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁𝑀 ≤ (𝑁 − 1)))

Proof of Theorem zltlem1
StepHypRef Expression
1 peano2zm 8842 . . 3 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
2 zleltp1 8859 . . 3 ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → (𝑀 ≤ (𝑁 − 1) ↔ 𝑀 < ((𝑁 − 1) + 1)))
31, 2sylan2 281 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ (𝑁 − 1) ↔ 𝑀 < ((𝑁 − 1) + 1)))
4 zcn 8809 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
5 ax-1cn 7492 . . . . 5 1 ∈ ℂ
6 npcan 7745 . . . . 5 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
74, 5, 6sylancl 405 . . . 4 (𝑁 ∈ ℤ → ((𝑁 − 1) + 1) = 𝑁)
87adantl 272 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 − 1) + 1) = 𝑁)
98breq2d 3863 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < ((𝑁 − 1) + 1) ↔ 𝑀 < 𝑁))
103, 9bitr2d 188 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁𝑀 ≤ (𝑁 − 1)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1290  wcel 1439   class class class wbr 3851  (class class class)co 5666  cc 7402  1c1 7405   + caddc 7407   < clt 7576  cle 7577  cmin 7707  cz 8804
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-cnex 7490  ax-resscn 7491  ax-1cn 7492  ax-1re 7493  ax-icn 7494  ax-addcl 7495  ax-addrcl 7496  ax-mulcl 7497  ax-addcom 7499  ax-addass 7501  ax-distr 7503  ax-i2m1 7504  ax-0lt1 7505  ax-0id 7507  ax-rnegex 7508  ax-cnre 7510  ax-pre-ltirr 7511  ax-pre-ltwlin 7512  ax-pre-lttrn 7513  ax-pre-ltadd 7515
This theorem depends on definitions:  df-bi 116  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2622  df-sbc 2842  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-br 3852  df-opab 3906  df-id 4129  df-xp 4457  df-rel 4458  df-cnv 4459  df-co 4460  df-dm 4461  df-iota 4993  df-fun 5030  df-fv 5036  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-pnf 7578  df-mnf 7579  df-xr 7580  df-ltxr 7581  df-le 7582  df-sub 7709  df-neg 7710  df-inn 8477  df-n0 8728  df-z 8805
This theorem is referenced by:  nn0ltlem1  8868  nn0lt2  8882  nnltlem1  8885  nnm1ge0  8886  zextlt  8892  uzm1  9103  elfzm11  9559  elfzo  9614  fzosplitprm1  9699  intfracq  9781  iseqf1olemqcl  9969  iseqf1olemnab  9971  iseqf1olemab  9972  seq3f1olemqsumkj  9981  seq3f1olemqsum  9983  iseqcoll  10301  fzm1ndvds  11189  nn0seqcvgd  11355  isprm3  11432  pw2dvds  11476
  Copyright terms: Public domain W3C validator