![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > zlem1lt | GIF version |
Description: Integer ordering relation. (Contributed by NM, 13-Nov-2004.) |
Ref | Expression |
---|---|
zlem1lt | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ↔ (𝑀 − 1) < 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2zm 9294 | . . 3 ⊢ (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ) | |
2 | zltp1le 9310 | . . 3 ⊢ (((𝑀 − 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 − 1) < 𝑁 ↔ ((𝑀 − 1) + 1) ≤ 𝑁)) | |
3 | 1, 2 | sylan 283 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 − 1) < 𝑁 ↔ ((𝑀 − 1) + 1) ≤ 𝑁)) |
4 | zcn 9261 | . . . . 5 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
5 | ax-1cn 7907 | . . . . 5 ⊢ 1 ∈ ℂ | |
6 | npcan 8169 | . . . . 5 ⊢ ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 − 1) + 1) = 𝑀) | |
7 | 4, 5, 6 | sylancl 413 | . . . 4 ⊢ (𝑀 ∈ ℤ → ((𝑀 − 1) + 1) = 𝑀) |
8 | 7 | adantr 276 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 − 1) + 1) = 𝑀) |
9 | 8 | breq1d 4015 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑀 − 1) + 1) ≤ 𝑁 ↔ 𝑀 ≤ 𝑁)) |
10 | 3, 9 | bitr2d 189 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ↔ (𝑀 − 1) < 𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 class class class wbr 4005 (class class class)co 5878 ℂcc 7812 1c1 7815 + caddc 7817 < clt 7995 ≤ cle 7996 − cmin 8131 ℤcz 9256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7905 ax-resscn 7906 ax-1cn 7907 ax-1re 7908 ax-icn 7909 ax-addcl 7910 ax-addrcl 7911 ax-mulcl 7912 ax-addcom 7914 ax-addass 7916 ax-distr 7918 ax-i2m1 7919 ax-0lt1 7920 ax-0id 7922 ax-rnegex 7923 ax-cnre 7925 ax-pre-ltirr 7926 ax-pre-ltwlin 7927 ax-pre-lttrn 7928 ax-pre-ltadd 7930 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-iota 5180 df-fun 5220 df-fv 5226 df-riota 5834 df-ov 5881 df-oprab 5882 df-mpo 5883 df-pnf 7997 df-mnf 7998 df-xr 7999 df-ltxr 8000 df-le 8001 df-sub 8133 df-neg 8134 df-inn 8923 df-n0 9180 df-z 9257 |
This theorem is referenced by: nn0lem1lt 9339 nnlem1lt 9340 uzdisj 10096 nn0disj 10141 fzon 10169 ssfzo12 10227 ceiqle 10316 nn0ltexp2 10692 hashdvds 12224 |
Copyright terms: Public domain | W3C validator |