| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lesub0 | GIF version | ||
| Description: Lemma to show a nonnegative number is zero. (Contributed by NM, 8-Oct-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| lesub0 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤ 𝐴 ∧ 𝐵 ≤ (𝐵 − 𝐴)) ↔ 𝐴 = 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0red 8027 | . . 3 ⊢ (𝐵 ∈ ℝ → 0 ∈ ℝ) | |
| 2 | letri3 8107 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 = 0 ↔ (𝐴 ≤ 0 ∧ 0 ≤ 𝐴))) | |
| 3 | 1, 2 | sylan2 286 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 0 ↔ (𝐴 ≤ 0 ∧ 0 ≤ 𝐴))) |
| 4 | ancom 266 | . . 3 ⊢ ((𝐴 ≤ 0 ∧ 0 ≤ 𝐴) ↔ (0 ≤ 𝐴 ∧ 𝐴 ≤ 0)) | |
| 5 | simpr 110 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 𝐴 ∈ ℝ) | |
| 6 | 0red 8027 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 0 ∈ ℝ) | |
| 7 | simpl 109 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 𝐵 ∈ ℝ) | |
| 8 | lesub2 8484 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 0 ↔ (𝐵 − 0) ≤ (𝐵 − 𝐴))) | |
| 9 | 5, 6, 7, 8 | syl3anc 1249 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐴 ≤ 0 ↔ (𝐵 − 0) ≤ (𝐵 − 𝐴))) |
| 10 | 7 | recnd 8055 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 𝐵 ∈ ℂ) |
| 11 | 10 | subid1d 8326 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 − 0) = 𝐵) |
| 12 | 11 | breq1d 4043 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵 − 0) ≤ (𝐵 − 𝐴) ↔ 𝐵 ≤ (𝐵 − 𝐴))) |
| 13 | 9, 12 | bitrd 188 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐴 ≤ 0 ↔ 𝐵 ≤ (𝐵 − 𝐴))) |
| 14 | 13 | ancoms 268 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 0 ↔ 𝐵 ≤ (𝐵 − 𝐴))) |
| 15 | 14 | anbi2d 464 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤ 𝐴 ∧ 𝐴 ≤ 0) ↔ (0 ≤ 𝐴 ∧ 𝐵 ≤ (𝐵 − 𝐴)))) |
| 16 | 4, 15 | bitrid 192 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 ≤ 0 ∧ 0 ≤ 𝐴) ↔ (0 ≤ 𝐴 ∧ 𝐵 ≤ (𝐵 − 𝐴)))) |
| 17 | 3, 16 | bitr2d 189 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤ 𝐴 ∧ 𝐵 ≤ (𝐵 − 𝐴)) ↔ 𝐴 = 0)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 class class class wbr 4033 (class class class)co 5922 ℝcr 7878 0cc0 7879 ≤ cle 8062 − cmin 8197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-apti 7994 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 |
| This theorem is referenced by: lesub0i 8523 |
| Copyright terms: Public domain | W3C validator |