Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > enqbreq2 | GIF version |
Description: Equivalence relation for positive fractions in terms of positive integers. (Contributed by Mario Carneiro, 8-May-2013.) |
Ref | Expression |
---|---|
enqbreq2 | ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ ((1st ‘𝐴) ·N (2nd ‘𝐵)) = ((1st ‘𝐵) ·N (2nd ‘𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1st2nd2 6154 | . . 3 ⊢ (𝐴 ∈ (N × N) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
2 | 1st2nd2 6154 | . . 3 ⊢ (𝐵 ∈ (N × N) → 𝐵 = 〈(1st ‘𝐵), (2nd ‘𝐵)〉) | |
3 | 1, 2 | breqan12d 4005 | . 2 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ~Q 〈(1st ‘𝐵), (2nd ‘𝐵)〉)) |
4 | xp1st 6144 | . . . 4 ⊢ (𝐴 ∈ (N × N) → (1st ‘𝐴) ∈ N) | |
5 | xp2nd 6145 | . . . 4 ⊢ (𝐴 ∈ (N × N) → (2nd ‘𝐴) ∈ N) | |
6 | 4, 5 | jca 304 | . . 3 ⊢ (𝐴 ∈ (N × N) → ((1st ‘𝐴) ∈ N ∧ (2nd ‘𝐴) ∈ N)) |
7 | xp1st 6144 | . . . 4 ⊢ (𝐵 ∈ (N × N) → (1st ‘𝐵) ∈ N) | |
8 | xp2nd 6145 | . . . 4 ⊢ (𝐵 ∈ (N × N) → (2nd ‘𝐵) ∈ N) | |
9 | 7, 8 | jca 304 | . . 3 ⊢ (𝐵 ∈ (N × N) → ((1st ‘𝐵) ∈ N ∧ (2nd ‘𝐵) ∈ N)) |
10 | enqbreq 7318 | . . 3 ⊢ ((((1st ‘𝐴) ∈ N ∧ (2nd ‘𝐴) ∈ N) ∧ ((1st ‘𝐵) ∈ N ∧ (2nd ‘𝐵) ∈ N)) → (〈(1st ‘𝐴), (2nd ‘𝐴)〉 ~Q 〈(1st ‘𝐵), (2nd ‘𝐵)〉 ↔ ((1st ‘𝐴) ·N (2nd ‘𝐵)) = ((2nd ‘𝐴) ·N (1st ‘𝐵)))) | |
11 | 6, 9, 10 | syl2an 287 | . 2 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (〈(1st ‘𝐴), (2nd ‘𝐴)〉 ~Q 〈(1st ‘𝐵), (2nd ‘𝐵)〉 ↔ ((1st ‘𝐴) ·N (2nd ‘𝐵)) = ((2nd ‘𝐴) ·N (1st ‘𝐵)))) |
12 | mulcompig 7293 | . . . 4 ⊢ (((2nd ‘𝐴) ∈ N ∧ (1st ‘𝐵) ∈ N) → ((2nd ‘𝐴) ·N (1st ‘𝐵)) = ((1st ‘𝐵) ·N (2nd ‘𝐴))) | |
13 | 5, 7, 12 | syl2an 287 | . . 3 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ((2nd ‘𝐴) ·N (1st ‘𝐵)) = ((1st ‘𝐵) ·N (2nd ‘𝐴))) |
14 | 13 | eqeq2d 2182 | . 2 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (((1st ‘𝐴) ·N (2nd ‘𝐵)) = ((2nd ‘𝐴) ·N (1st ‘𝐵)) ↔ ((1st ‘𝐴) ·N (2nd ‘𝐵)) = ((1st ‘𝐵) ·N (2nd ‘𝐴)))) |
15 | 3, 11, 14 | 3bitrd 213 | 1 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ ((1st ‘𝐴) ·N (2nd ‘𝐵)) = ((1st ‘𝐵) ·N (2nd ‘𝐴)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 〈cop 3586 class class class wbr 3989 × cxp 4609 ‘cfv 5198 (class class class)co 5853 1st c1st 6117 2nd c2nd 6118 Ncnpi 7234 ·N cmi 7236 ~Q ceq 7241 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-oadd 6399 df-omul 6400 df-ni 7266 df-mi 7268 df-enq 7309 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |