ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enqbreq2 GIF version

Theorem enqbreq2 7319
Description: Equivalence relation for positive fractions in terms of positive integers. (Contributed by Mario Carneiro, 8-May-2013.)
Assertion
Ref Expression
enqbreq2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ ((1st𝐴) ·N (2nd𝐵)) = ((1st𝐵) ·N (2nd𝐴))))

Proof of Theorem enqbreq2
StepHypRef Expression
1 1st2nd2 6154 . . 3 (𝐴 ∈ (N × N) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
2 1st2nd2 6154 . . 3 (𝐵 ∈ (N × N) → 𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
31, 2breqan12d 4005 . 2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ ⟨(1st𝐴), (2nd𝐴)⟩ ~Q ⟨(1st𝐵), (2nd𝐵)⟩))
4 xp1st 6144 . . . 4 (𝐴 ∈ (N × N) → (1st𝐴) ∈ N)
5 xp2nd 6145 . . . 4 (𝐴 ∈ (N × N) → (2nd𝐴) ∈ N)
64, 5jca 304 . . 3 (𝐴 ∈ (N × N) → ((1st𝐴) ∈ N ∧ (2nd𝐴) ∈ N))
7 xp1st 6144 . . . 4 (𝐵 ∈ (N × N) → (1st𝐵) ∈ N)
8 xp2nd 6145 . . . 4 (𝐵 ∈ (N × N) → (2nd𝐵) ∈ N)
97, 8jca 304 . . 3 (𝐵 ∈ (N × N) → ((1st𝐵) ∈ N ∧ (2nd𝐵) ∈ N))
10 enqbreq 7318 . . 3 ((((1st𝐴) ∈ N ∧ (2nd𝐴) ∈ N) ∧ ((1st𝐵) ∈ N ∧ (2nd𝐵) ∈ N)) → (⟨(1st𝐴), (2nd𝐴)⟩ ~Q ⟨(1st𝐵), (2nd𝐵)⟩ ↔ ((1st𝐴) ·N (2nd𝐵)) = ((2nd𝐴) ·N (1st𝐵))))
116, 9, 10syl2an 287 . 2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (⟨(1st𝐴), (2nd𝐴)⟩ ~Q ⟨(1st𝐵), (2nd𝐵)⟩ ↔ ((1st𝐴) ·N (2nd𝐵)) = ((2nd𝐴) ·N (1st𝐵))))
12 mulcompig 7293 . . . 4 (((2nd𝐴) ∈ N ∧ (1st𝐵) ∈ N) → ((2nd𝐴) ·N (1st𝐵)) = ((1st𝐵) ·N (2nd𝐴)))
135, 7, 12syl2an 287 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ((2nd𝐴) ·N (1st𝐵)) = ((1st𝐵) ·N (2nd𝐴)))
1413eqeq2d 2182 . 2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (((1st𝐴) ·N (2nd𝐵)) = ((2nd𝐴) ·N (1st𝐵)) ↔ ((1st𝐴) ·N (2nd𝐵)) = ((1st𝐵) ·N (2nd𝐴))))
153, 11, 143bitrd 213 1 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ ((1st𝐴) ·N (2nd𝐵)) = ((1st𝐵) ·N (2nd𝐴))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141  cop 3586   class class class wbr 3989   × cxp 4609  cfv 5198  (class class class)co 5853  1st c1st 6117  2nd c2nd 6118  Ncnpi 7234   ·N cmi 7236   ~Q ceq 7241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-oadd 6399  df-omul 6400  df-ni 7266  df-mi 7268  df-enq 7309
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator