![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > enqbreq2 | GIF version |
Description: Equivalence relation for positive fractions in terms of positive integers. (Contributed by Mario Carneiro, 8-May-2013.) |
Ref | Expression |
---|---|
enqbreq2 | ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ ((1st ‘𝐴) ·N (2nd ‘𝐵)) = ((1st ‘𝐵) ·N (2nd ‘𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1st2nd2 6230 | . . 3 ⊢ (𝐴 ∈ (N × N) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
2 | 1st2nd2 6230 | . . 3 ⊢ (𝐵 ∈ (N × N) → 𝐵 = 〈(1st ‘𝐵), (2nd ‘𝐵)〉) | |
3 | 1, 2 | breqan12d 4046 | . 2 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ~Q 〈(1st ‘𝐵), (2nd ‘𝐵)〉)) |
4 | xp1st 6220 | . . . 4 ⊢ (𝐴 ∈ (N × N) → (1st ‘𝐴) ∈ N) | |
5 | xp2nd 6221 | . . . 4 ⊢ (𝐴 ∈ (N × N) → (2nd ‘𝐴) ∈ N) | |
6 | 4, 5 | jca 306 | . . 3 ⊢ (𝐴 ∈ (N × N) → ((1st ‘𝐴) ∈ N ∧ (2nd ‘𝐴) ∈ N)) |
7 | xp1st 6220 | . . . 4 ⊢ (𝐵 ∈ (N × N) → (1st ‘𝐵) ∈ N) | |
8 | xp2nd 6221 | . . . 4 ⊢ (𝐵 ∈ (N × N) → (2nd ‘𝐵) ∈ N) | |
9 | 7, 8 | jca 306 | . . 3 ⊢ (𝐵 ∈ (N × N) → ((1st ‘𝐵) ∈ N ∧ (2nd ‘𝐵) ∈ N)) |
10 | enqbreq 7418 | . . 3 ⊢ ((((1st ‘𝐴) ∈ N ∧ (2nd ‘𝐴) ∈ N) ∧ ((1st ‘𝐵) ∈ N ∧ (2nd ‘𝐵) ∈ N)) → (〈(1st ‘𝐴), (2nd ‘𝐴)〉 ~Q 〈(1st ‘𝐵), (2nd ‘𝐵)〉 ↔ ((1st ‘𝐴) ·N (2nd ‘𝐵)) = ((2nd ‘𝐴) ·N (1st ‘𝐵)))) | |
11 | 6, 9, 10 | syl2an 289 | . 2 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (〈(1st ‘𝐴), (2nd ‘𝐴)〉 ~Q 〈(1st ‘𝐵), (2nd ‘𝐵)〉 ↔ ((1st ‘𝐴) ·N (2nd ‘𝐵)) = ((2nd ‘𝐴) ·N (1st ‘𝐵)))) |
12 | mulcompig 7393 | . . . 4 ⊢ (((2nd ‘𝐴) ∈ N ∧ (1st ‘𝐵) ∈ N) → ((2nd ‘𝐴) ·N (1st ‘𝐵)) = ((1st ‘𝐵) ·N (2nd ‘𝐴))) | |
13 | 5, 7, 12 | syl2an 289 | . . 3 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ((2nd ‘𝐴) ·N (1st ‘𝐵)) = ((1st ‘𝐵) ·N (2nd ‘𝐴))) |
14 | 13 | eqeq2d 2205 | . 2 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (((1st ‘𝐴) ·N (2nd ‘𝐵)) = ((2nd ‘𝐴) ·N (1st ‘𝐵)) ↔ ((1st ‘𝐴) ·N (2nd ‘𝐵)) = ((1st ‘𝐵) ·N (2nd ‘𝐴)))) |
15 | 3, 11, 14 | 3bitrd 214 | 1 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ ((1st ‘𝐴) ·N (2nd ‘𝐵)) = ((1st ‘𝐵) ·N (2nd ‘𝐴)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 〈cop 3622 class class class wbr 4030 × cxp 4658 ‘cfv 5255 (class class class)co 5919 1st c1st 6193 2nd c2nd 6194 Ncnpi 7334 ·N cmi 7336 ~Q ceq 7341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-iord 4398 df-on 4400 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-irdg 6425 df-oadd 6475 df-omul 6476 df-ni 7366 df-mi 7368 df-enq 7409 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |