![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > enqbreq2 | GIF version |
Description: Equivalence relation for positive fractions in terms of positive integers. (Contributed by Mario Carneiro, 8-May-2013.) |
Ref | Expression |
---|---|
enqbreq2 | โข ((๐ด โ (N ร N) โง ๐ต โ (N ร N)) โ (๐ด ~Q ๐ต โ ((1st โ๐ด) ยทN (2nd โ๐ต)) = ((1st โ๐ต) ยทN (2nd โ๐ด)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1st2nd2 6178 | . . 3 โข (๐ด โ (N ร N) โ ๐ด = โจ(1st โ๐ด), (2nd โ๐ด)โฉ) | |
2 | 1st2nd2 6178 | . . 3 โข (๐ต โ (N ร N) โ ๐ต = โจ(1st โ๐ต), (2nd โ๐ต)โฉ) | |
3 | 1, 2 | breqan12d 4021 | . 2 โข ((๐ด โ (N ร N) โง ๐ต โ (N ร N)) โ (๐ด ~Q ๐ต โ โจ(1st โ๐ด), (2nd โ๐ด)โฉ ~Q โจ(1st โ๐ต), (2nd โ๐ต)โฉ)) |
4 | xp1st 6168 | . . . 4 โข (๐ด โ (N ร N) โ (1st โ๐ด) โ N) | |
5 | xp2nd 6169 | . . . 4 โข (๐ด โ (N ร N) โ (2nd โ๐ด) โ N) | |
6 | 4, 5 | jca 306 | . . 3 โข (๐ด โ (N ร N) โ ((1st โ๐ด) โ N โง (2nd โ๐ด) โ N)) |
7 | xp1st 6168 | . . . 4 โข (๐ต โ (N ร N) โ (1st โ๐ต) โ N) | |
8 | xp2nd 6169 | . . . 4 โข (๐ต โ (N ร N) โ (2nd โ๐ต) โ N) | |
9 | 7, 8 | jca 306 | . . 3 โข (๐ต โ (N ร N) โ ((1st โ๐ต) โ N โง (2nd โ๐ต) โ N)) |
10 | enqbreq 7357 | . . 3 โข ((((1st โ๐ด) โ N โง (2nd โ๐ด) โ N) โง ((1st โ๐ต) โ N โง (2nd โ๐ต) โ N)) โ (โจ(1st โ๐ด), (2nd โ๐ด)โฉ ~Q โจ(1st โ๐ต), (2nd โ๐ต)โฉ โ ((1st โ๐ด) ยทN (2nd โ๐ต)) = ((2nd โ๐ด) ยทN (1st โ๐ต)))) | |
11 | 6, 9, 10 | syl2an 289 | . 2 โข ((๐ด โ (N ร N) โง ๐ต โ (N ร N)) โ (โจ(1st โ๐ด), (2nd โ๐ด)โฉ ~Q โจ(1st โ๐ต), (2nd โ๐ต)โฉ โ ((1st โ๐ด) ยทN (2nd โ๐ต)) = ((2nd โ๐ด) ยทN (1st โ๐ต)))) |
12 | mulcompig 7332 | . . . 4 โข (((2nd โ๐ด) โ N โง (1st โ๐ต) โ N) โ ((2nd โ๐ด) ยทN (1st โ๐ต)) = ((1st โ๐ต) ยทN (2nd โ๐ด))) | |
13 | 5, 7, 12 | syl2an 289 | . . 3 โข ((๐ด โ (N ร N) โง ๐ต โ (N ร N)) โ ((2nd โ๐ด) ยทN (1st โ๐ต)) = ((1st โ๐ต) ยทN (2nd โ๐ด))) |
14 | 13 | eqeq2d 2189 | . 2 โข ((๐ด โ (N ร N) โง ๐ต โ (N ร N)) โ (((1st โ๐ด) ยทN (2nd โ๐ต)) = ((2nd โ๐ด) ยทN (1st โ๐ต)) โ ((1st โ๐ด) ยทN (2nd โ๐ต)) = ((1st โ๐ต) ยทN (2nd โ๐ด)))) |
15 | 3, 11, 14 | 3bitrd 214 | 1 โข ((๐ด โ (N ร N) โง ๐ต โ (N ร N)) โ (๐ด ~Q ๐ต โ ((1st โ๐ด) ยทN (2nd โ๐ต)) = ((1st โ๐ต) ยทN (2nd โ๐ด)))) |
Colors of variables: wff set class |
Syntax hints: โ wi 4 โง wa 104 โ wb 105 = wceq 1353 โ wcel 2148 โจcop 3597 class class class wbr 4005 ร cxp 4626 โcfv 5218 (class class class)co 5877 1st c1st 6141 2nd c2nd 6142 Ncnpi 7273 ยทN cmi 7275 ~Q ceq 7280 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-iord 4368 df-on 4370 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-recs 6308 df-irdg 6373 df-oadd 6423 df-omul 6424 df-ni 7305 df-mi 7307 df-enq 7348 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |