ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgt0sr GIF version

Theorem mulgt0sr 7921
Description: The product of two positive signed reals is positive. (Contributed by NM, 13-May-1996.)
Assertion
Ref Expression
mulgt0sr ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 ·R 𝐵))

Proof of Theorem mulgt0sr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelsr 7881 . . . . 5 <R ⊆ (R × R)
21brel 4740 . . . 4 (0R <R 𝐴 → (0RR𝐴R))
32simprd 114 . . 3 (0R <R 𝐴𝐴R)
41brel 4740 . . . 4 (0R <R 𝐵 → (0RR𝐵R))
54simprd 114 . . 3 (0R <R 𝐵𝐵R)
63, 5anim12i 338 . 2 ((0R <R 𝐴 ∧ 0R <R 𝐵) → (𝐴R𝐵R))
7 df-nr 7870 . . 3 R = ((P × P) / ~R )
8 breq2 4058 . . . . 5 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (0R <R [⟨𝑥, 𝑦⟩] ~R ↔ 0R <R 𝐴))
98anbi1d 465 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ((0R <R [⟨𝑥, 𝑦⟩] ~R ∧ 0R <R [⟨𝑧, 𝑤⟩] ~R ) ↔ (0R <R 𝐴 ∧ 0R <R [⟨𝑧, 𝑤⟩] ~R )))
10 oveq1 5969 . . . . 5 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R ) = (𝐴 ·R [⟨𝑧, 𝑤⟩] ~R ))
1110breq2d 4066 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (0R <R ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R ) ↔ 0R <R (𝐴 ·R [⟨𝑧, 𝑤⟩] ~R )))
129, 11imbi12d 234 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (((0R <R [⟨𝑥, 𝑦⟩] ~R ∧ 0R <R [⟨𝑧, 𝑤⟩] ~R ) → 0R <R ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R )) ↔ ((0R <R 𝐴 ∧ 0R <R [⟨𝑧, 𝑤⟩] ~R ) → 0R <R (𝐴 ·R [⟨𝑧, 𝑤⟩] ~R ))))
13 breq2 4058 . . . . 5 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (0R <R [⟨𝑧, 𝑤⟩] ~R ↔ 0R <R 𝐵))
1413anbi2d 464 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → ((0R <R 𝐴 ∧ 0R <R [⟨𝑧, 𝑤⟩] ~R ) ↔ (0R <R 𝐴 ∧ 0R <R 𝐵)))
15 oveq2 5970 . . . . 5 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (𝐴 ·R [⟨𝑧, 𝑤⟩] ~R ) = (𝐴 ·R 𝐵))
1615breq2d 4066 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (0R <R (𝐴 ·R [⟨𝑧, 𝑤⟩] ~R ) ↔ 0R <R (𝐴 ·R 𝐵)))
1714, 16imbi12d 234 . . 3 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (((0R <R 𝐴 ∧ 0R <R [⟨𝑧, 𝑤⟩] ~R ) → 0R <R (𝐴 ·R [⟨𝑧, 𝑤⟩] ~R )) ↔ ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 ·R 𝐵))))
18 gt0srpr 7891 . . . . 5 (0R <R [⟨𝑥, 𝑦⟩] ~R𝑦<P 𝑥)
19 gt0srpr 7891 . . . . 5 (0R <R [⟨𝑧, 𝑤⟩] ~R𝑤<P 𝑧)
2018, 19anbi12i 460 . . . 4 ((0R <R [⟨𝑥, 𝑦⟩] ~R ∧ 0R <R [⟨𝑧, 𝑤⟩] ~R ) ↔ (𝑦<P 𝑥𝑤<P 𝑧))
21 ltexpri 7756 . . . . . . 7 (𝑦<P 𝑥 → ∃𝑣P (𝑦 +P 𝑣) = 𝑥)
22 ltexpri 7756 . . . . . . . . 9 (𝑤<P 𝑧 → ∃𝑢P (𝑤 +P 𝑢) = 𝑧)
23 addclpr 7680 . . . . . . . . . . . . . 14 ((𝑓P𝑔P) → (𝑓 +P 𝑔) ∈ P)
2423adantl 277 . . . . . . . . . . . . 13 ((((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) ∧ (𝑓P𝑔P)) → (𝑓 +P 𝑔) ∈ P)
25 simplrr 536 . . . . . . . . . . . . . . 15 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (𝑦 +P 𝑣) = 𝑥)
26 simplr 528 . . . . . . . . . . . . . . . . 17 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → 𝑦P)
2726ad2antrr 488 . . . . . . . . . . . . . . . 16 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → 𝑦P)
28 simplrl 535 . . . . . . . . . . . . . . . 16 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → 𝑣P)
2924, 27, 28caovcld 6118 . . . . . . . . . . . . . . 15 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (𝑦 +P 𝑣) ∈ P)
3025, 29eqeltrrd 2284 . . . . . . . . . . . . . 14 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → 𝑥P)
31 simplrr 536 . . . . . . . . . . . . . . 15 ((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) → 𝑤P)
3231adantr 276 . . . . . . . . . . . . . 14 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → 𝑤P)
33 mulclpr 7715 . . . . . . . . . . . . . 14 ((𝑥P𝑤P) → (𝑥 ·P 𝑤) ∈ P)
3430, 32, 33syl2anc 411 . . . . . . . . . . . . 13 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (𝑥 ·P 𝑤) ∈ P)
35 simplrl 535 . . . . . . . . . . . . . . 15 ((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) → 𝑧P)
3635adantr 276 . . . . . . . . . . . . . 14 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → 𝑧P)
37 mulclpr 7715 . . . . . . . . . . . . . 14 ((𝑦P𝑧P) → (𝑦 ·P 𝑧) ∈ P)
3827, 36, 37syl2anc 411 . . . . . . . . . . . . 13 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (𝑦 ·P 𝑧) ∈ P)
3924, 34, 38caovcld 6118 . . . . . . . . . . . 12 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P)
40 simprl 529 . . . . . . . . . . . . 13 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → 𝑢P)
41 mulclpr 7715 . . . . . . . . . . . . 13 ((𝑣P𝑢P) → (𝑣 ·P 𝑢) ∈ P)
4228, 40, 41syl2anc 411 . . . . . . . . . . . 12 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (𝑣 ·P 𝑢) ∈ P)
43 ltaddpr 7740 . . . . . . . . . . . 12 ((((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P ∧ (𝑣 ·P 𝑢) ∈ P) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢)))
4439, 42, 43syl2anc 411 . . . . . . . . . . 11 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢)))
45 simprr 531 . . . . . . . . . . . . . . 15 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (𝑤 +P 𝑢) = 𝑧)
46 oveq12 5971 . . . . . . . . . . . . . . . 16 (((𝑦 +P 𝑣) = 𝑥 ∧ (𝑤 +P 𝑢) = 𝑧) → ((𝑦 +P 𝑣) ·P (𝑤 +P 𝑢)) = (𝑥 ·P 𝑧))
4746oveq1d 5977 . . . . . . . . . . . . . . 15 (((𝑦 +P 𝑣) = 𝑥 ∧ (𝑤 +P 𝑢) = 𝑧) → (((𝑦 +P 𝑣) ·P (𝑤 +P 𝑢)) +P ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤))) = ((𝑥 ·P 𝑧) +P ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤))))
4825, 45, 47syl2anc 411 . . . . . . . . . . . . . 14 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (((𝑦 +P 𝑣) ·P (𝑤 +P 𝑢)) +P ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤))) = ((𝑥 ·P 𝑧) +P ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤))))
49 distrprg 7731 . . . . . . . . . . . . . . . . . . 19 ((𝑦P𝑤P𝑢P) → (𝑦 ·P (𝑤 +P 𝑢)) = ((𝑦 ·P 𝑤) +P (𝑦 ·P 𝑢)))
5027, 32, 40, 49syl3anc 1250 . . . . . . . . . . . . . . . . . 18 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (𝑦 ·P (𝑤 +P 𝑢)) = ((𝑦 ·P 𝑤) +P (𝑦 ·P 𝑢)))
51 oveq2 5970 . . . . . . . . . . . . . . . . . . . 20 ((𝑤 +P 𝑢) = 𝑧 → (𝑦 ·P (𝑤 +P 𝑢)) = (𝑦 ·P 𝑧))
5251adantl 277 . . . . . . . . . . . . . . . . . . 19 ((𝑢P ∧ (𝑤 +P 𝑢) = 𝑧) → (𝑦 ·P (𝑤 +P 𝑢)) = (𝑦 ·P 𝑧))
5352adantl 277 . . . . . . . . . . . . . . . . . 18 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (𝑦 ·P (𝑤 +P 𝑢)) = (𝑦 ·P 𝑧))
5450, 53eqtr3d 2241 . . . . . . . . . . . . . . . . 17 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑦 ·P 𝑤) +P (𝑦 ·P 𝑢)) = (𝑦 ·P 𝑧))
5554oveq1d 5977 . . . . . . . . . . . . . . . 16 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (((𝑦 ·P 𝑤) +P (𝑦 ·P 𝑢)) +P ((𝑣 ·P 𝑤) +P (𝑣 ·P 𝑢))) = ((𝑦 ·P 𝑧) +P ((𝑣 ·P 𝑤) +P (𝑣 ·P 𝑢))))
56 distrprg 7731 . . . . . . . . . . . . . . . . . . . 20 ((𝑓P𝑔PP) → (𝑓 ·P (𝑔 +P )) = ((𝑓 ·P 𝑔) +P (𝑓 ·P )))
5756adantl 277 . . . . . . . . . . . . . . . . . . 19 ((((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) ∧ (𝑓P𝑔PP)) → (𝑓 ·P (𝑔 +P )) = ((𝑓 ·P 𝑔) +P (𝑓 ·P )))
58 mulcomprg 7723 . . . . . . . . . . . . . . . . . . . 20 ((𝑓P𝑔P) → (𝑓 ·P 𝑔) = (𝑔 ·P 𝑓))
5958adantl 277 . . . . . . . . . . . . . . . . . . 19 ((((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) ∧ (𝑓P𝑔P)) → (𝑓 ·P 𝑔) = (𝑔 ·P 𝑓))
6057, 27, 28, 32, 24, 59caovdir2d 6141 . . . . . . . . . . . . . . . . . 18 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑦 +P 𝑣) ·P 𝑤) = ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤)))
6157, 27, 28, 40, 24, 59caovdir2d 6141 . . . . . . . . . . . . . . . . . 18 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑦 +P 𝑣) ·P 𝑢) = ((𝑦 ·P 𝑢) +P (𝑣 ·P 𝑢)))
6260, 61oveq12d 5980 . . . . . . . . . . . . . . . . 17 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (((𝑦 +P 𝑣) ·P 𝑤) +P ((𝑦 +P 𝑣) ·P 𝑢)) = (((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤)) +P ((𝑦 ·P 𝑢) +P (𝑣 ·P 𝑢))))
63 distrprg 7731 . . . . . . . . . . . . . . . . . 18 (((𝑦 +P 𝑣) ∈ P𝑤P𝑢P) → ((𝑦 +P 𝑣) ·P (𝑤 +P 𝑢)) = (((𝑦 +P 𝑣) ·P 𝑤) +P ((𝑦 +P 𝑣) ·P 𝑢)))
6429, 32, 40, 63syl3anc 1250 . . . . . . . . . . . . . . . . 17 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑦 +P 𝑣) ·P (𝑤 +P 𝑢)) = (((𝑦 +P 𝑣) ·P 𝑤) +P ((𝑦 +P 𝑣) ·P 𝑢)))
65 mulclpr 7715 . . . . . . . . . . . . . . . . . . 19 ((𝑦P𝑤P) → (𝑦 ·P 𝑤) ∈ P)
6627, 32, 65syl2anc 411 . . . . . . . . . . . . . . . . . 18 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (𝑦 ·P 𝑤) ∈ P)
67 mulclpr 7715 . . . . . . . . . . . . . . . . . . 19 ((𝑦P𝑢P) → (𝑦 ·P 𝑢) ∈ P)
6827, 40, 67syl2anc 411 . . . . . . . . . . . . . . . . . 18 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (𝑦 ·P 𝑢) ∈ P)
69 mulclpr 7715 . . . . . . . . . . . . . . . . . . 19 ((𝑣P𝑤P) → (𝑣 ·P 𝑤) ∈ P)
7028, 32, 69syl2anc 411 . . . . . . . . . . . . . . . . . 18 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (𝑣 ·P 𝑤) ∈ P)
71 addcomprg 7721 . . . . . . . . . . . . . . . . . . 19 ((𝑓P𝑔P) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
7271adantl 277 . . . . . . . . . . . . . . . . . 18 ((((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) ∧ (𝑓P𝑔P)) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
73 addassprg 7722 . . . . . . . . . . . . . . . . . . 19 ((𝑓P𝑔PP) → ((𝑓 +P 𝑔) +P ) = (𝑓 +P (𝑔 +P )))
7473adantl 277 . . . . . . . . . . . . . . . . . 18 ((((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) ∧ (𝑓P𝑔PP)) → ((𝑓 +P 𝑔) +P ) = (𝑓 +P (𝑔 +P )))
7566, 68, 70, 72, 74, 42, 24caov4d 6149 . . . . . . . . . . . . . . . . 17 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (((𝑦 ·P 𝑤) +P (𝑦 ·P 𝑢)) +P ((𝑣 ·P 𝑤) +P (𝑣 ·P 𝑢))) = (((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤)) +P ((𝑦 ·P 𝑢) +P (𝑣 ·P 𝑢))))
7662, 64, 753eqtr4d 2249 . . . . . . . . . . . . . . . 16 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑦 +P 𝑣) ·P (𝑤 +P 𝑢)) = (((𝑦 ·P 𝑤) +P (𝑦 ·P 𝑢)) +P ((𝑣 ·P 𝑤) +P (𝑣 ·P 𝑢))))
7770, 38, 42, 72, 74caov12d 6146 . . . . . . . . . . . . . . . 16 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑣 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))) = ((𝑦 ·P 𝑧) +P ((𝑣 ·P 𝑤) +P (𝑣 ·P 𝑢))))
7855, 76, 773eqtr4d 2249 . . . . . . . . . . . . . . 15 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑦 +P 𝑣) ·P (𝑤 +P 𝑢)) = ((𝑣 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))))
79 oveq1 5969 . . . . . . . . . . . . . . . . . 18 ((𝑦 +P 𝑣) = 𝑥 → ((𝑦 +P 𝑣) ·P 𝑤) = (𝑥 ·P 𝑤))
8079adantl 277 . . . . . . . . . . . . . . . . 17 ((𝑣P ∧ (𝑦 +P 𝑣) = 𝑥) → ((𝑦 +P 𝑣) ·P 𝑤) = (𝑥 ·P 𝑤))
8180ad2antlr 489 . . . . . . . . . . . . . . . 16 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑦 +P 𝑣) ·P 𝑤) = (𝑥 ·P 𝑤))
8260, 81eqtr3d 2241 . . . . . . . . . . . . . . 15 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤)) = (𝑥 ·P 𝑤))
8378, 82oveq12d 5980 . . . . . . . . . . . . . 14 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (((𝑦 +P 𝑣) ·P (𝑤 +P 𝑢)) +P ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤))) = (((𝑣 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))) +P (𝑥 ·P 𝑤)))
8448, 83eqtr3d 2241 . . . . . . . . . . . . 13 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑥 ·P 𝑧) +P ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤))) = (((𝑣 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))) +P (𝑥 ·P 𝑤)))
85 mulclpr 7715 . . . . . . . . . . . . . . . 16 ((𝑥P𝑧P) → (𝑥 ·P 𝑧) ∈ P)
8630, 36, 85syl2anc 411 . . . . . . . . . . . . . . 15 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (𝑥 ·P 𝑧) ∈ P)
87 addassprg 7722 . . . . . . . . . . . . . . 15 (((𝑥 ·P 𝑧) ∈ P ∧ (𝑦 ·P 𝑤) ∈ P ∧ (𝑣 ·P 𝑤) ∈ P) → (((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) +P (𝑣 ·P 𝑤)) = ((𝑥 ·P 𝑧) +P ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤))))
8886, 66, 70, 87syl3anc 1250 . . . . . . . . . . . . . 14 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) +P (𝑣 ·P 𝑤)) = ((𝑥 ·P 𝑧) +P ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤))))
89 addclpr 7680 . . . . . . . . . . . . . . . 16 (((𝑥 ·P 𝑧) ∈ P ∧ (𝑦 ·P 𝑤) ∈ P) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P)
9086, 66, 89syl2anc 411 . . . . . . . . . . . . . . 15 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P)
91 addcomprg 7721 . . . . . . . . . . . . . . 15 ((((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P ∧ (𝑣 ·P 𝑤) ∈ P) → (((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) +P (𝑣 ·P 𝑤)) = ((𝑣 ·P 𝑤) +P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))))
9290, 70, 91syl2anc 411 . . . . . . . . . . . . . 14 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) +P (𝑣 ·P 𝑤)) = ((𝑣 ·P 𝑤) +P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))))
9388, 92eqtr3d 2241 . . . . . . . . . . . . 13 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑥 ·P 𝑧) +P ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤))) = ((𝑣 ·P 𝑤) +P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))))
9424, 38, 42caovcld 6118 . . . . . . . . . . . . . . 15 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢)) ∈ P)
95 addassprg 7722 . . . . . . . . . . . . . . 15 (((𝑣 ·P 𝑤) ∈ P ∧ (𝑥 ·P 𝑤) ∈ P ∧ ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢)) ∈ P) → (((𝑣 ·P 𝑤) +P (𝑥 ·P 𝑤)) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))) = ((𝑣 ·P 𝑤) +P ((𝑥 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢)))))
9670, 34, 94, 95syl3anc 1250 . . . . . . . . . . . . . 14 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (((𝑣 ·P 𝑤) +P (𝑥 ·P 𝑤)) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))) = ((𝑣 ·P 𝑤) +P ((𝑥 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢)))))
9770, 94, 34, 72, 74caov32d 6145 . . . . . . . . . . . . . 14 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (((𝑣 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))) +P (𝑥 ·P 𝑤)) = (((𝑣 ·P 𝑤) +P (𝑥 ·P 𝑤)) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))))
98 addassprg 7722 . . . . . . . . . . . . . . . 16 (((𝑥 ·P 𝑤) ∈ P ∧ (𝑦 ·P 𝑧) ∈ P ∧ (𝑣 ·P 𝑢) ∈ P) → (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢)) = ((𝑥 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))))
9934, 38, 42, 98syl3anc 1250 . . . . . . . . . . . . . . 15 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢)) = ((𝑥 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))))
10099oveq2d 5978 . . . . . . . . . . . . . 14 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑣 ·P 𝑤) +P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢))) = ((𝑣 ·P 𝑤) +P ((𝑥 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢)))))
10196, 97, 1003eqtr4d 2249 . . . . . . . . . . . . 13 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (((𝑣 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))) +P (𝑥 ·P 𝑤)) = ((𝑣 ·P 𝑤) +P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢))))
10284, 93, 1013eqtr3d 2247 . . . . . . . . . . . 12 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑣 ·P 𝑤) +P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))) = ((𝑣 ·P 𝑤) +P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢))))
10324, 39, 42caovcld 6118 . . . . . . . . . . . . 13 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢)) ∈ P)
104 addcanprg 7759 . . . . . . . . . . . . 13 (((𝑣 ·P 𝑤) ∈ P ∧ ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P ∧ (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢)) ∈ P) → (((𝑣 ·P 𝑤) +P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))) = ((𝑣 ·P 𝑤) +P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢))) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) = (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢))))
10570, 90, 103, 104syl3anc 1250 . . . . . . . . . . . 12 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (((𝑣 ·P 𝑤) +P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))) = ((𝑣 ·P 𝑤) +P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢))) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) = (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢))))
106102, 105mpd 13 . . . . . . . . . . 11 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) = (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢)))
10744, 106breqtrrd 4082 . . . . . . . . . 10 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)))
108107rexlimdvaa 2625 . . . . . . . . 9 ((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) → (∃𝑢P (𝑤 +P 𝑢) = 𝑧 → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))))
10922, 108syl5 32 . . . . . . . 8 ((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) → (𝑤<P 𝑧 → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))))
110109rexlimdvaa 2625 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (∃𝑣P (𝑦 +P 𝑣) = 𝑥 → (𝑤<P 𝑧 → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)))))
11121, 110syl5 32 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑦<P 𝑥 → (𝑤<P 𝑧 → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)))))
112111impd 254 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑦<P 𝑥𝑤<P 𝑧) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))))
113 mulsrpr 7889 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R ) = [⟨((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))⟩] ~R )
114113breq2d 4066 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (0R <R ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R ) ↔ 0R <R [⟨((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))⟩] ~R ))
115 gt0srpr 7891 . . . . . 6 (0R <R [⟨((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))⟩] ~R ↔ ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)))
116114, 115bitrdi 196 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (0R <R ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R ) ↔ ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))))
117112, 116sylibrd 169 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑦<P 𝑥𝑤<P 𝑧) → 0R <R ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R )))
11820, 117biimtrid 152 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((0R <R [⟨𝑥, 𝑦⟩] ~R ∧ 0R <R [⟨𝑧, 𝑤⟩] ~R ) → 0R <R ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R )))
1197, 12, 17, 1182ecoptocl 6728 . 2 ((𝐴R𝐵R) → ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 ·R 𝐵)))
1206, 119mpcom 36 1 ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 ·R 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2177  wrex 2486  cop 3641   class class class wbr 4054  (class class class)co 5962  [cec 6636  Pcnp 7434   +P cpp 7436   ·P cmp 7437  <P cltp 7438   ~R cer 7439  Rcnr 7440  0Rc0r 7441   ·R cmr 7445   <R cltr 7446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-eprel 4349  df-id 4353  df-po 4356  df-iso 4357  df-iord 4426  df-on 4428  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-recs 6409  df-irdg 6474  df-1o 6520  df-2o 6521  df-oadd 6524  df-omul 6525  df-er 6638  df-ec 6640  df-qs 6644  df-ni 7447  df-pli 7448  df-mi 7449  df-lti 7450  df-plpq 7487  df-mpq 7488  df-enq 7490  df-nqqs 7491  df-plqqs 7492  df-mqqs 7493  df-1nqqs 7494  df-rq 7495  df-ltnqqs 7496  df-enq0 7567  df-nq0 7568  df-0nq0 7569  df-plq0 7570  df-mq0 7571  df-inp 7609  df-i1p 7610  df-iplp 7611  df-imp 7612  df-iltp 7613  df-enr 7869  df-nr 7870  df-mr 7872  df-ltr 7873  df-0r 7874
This theorem is referenced by:  axpre-mulgt0  8030
  Copyright terms: Public domain W3C validator