| Step | Hyp | Ref
| Expression |
| 1 | | ltrelsr 7805 |
. . . . 5
⊢
<R ⊆ (R ×
R) |
| 2 | 1 | brel 4715 |
. . . 4
⊢
(0R <R 𝐴 →
(0R ∈ R ∧ 𝐴 ∈ R)) |
| 3 | 2 | simprd 114 |
. . 3
⊢
(0R <R 𝐴 → 𝐴 ∈ R) |
| 4 | 1 | brel 4715 |
. . . 4
⊢
(0R <R 𝐵 →
(0R ∈ R ∧ 𝐵 ∈ R)) |
| 5 | 4 | simprd 114 |
. . 3
⊢
(0R <R 𝐵 → 𝐵 ∈ R) |
| 6 | 3, 5 | anim12i 338 |
. 2
⊢
((0R <R 𝐴 ∧
0R <R 𝐵) → (𝐴 ∈ R ∧ 𝐵 ∈
R)) |
| 7 | | df-nr 7794 |
. . 3
⊢
R = ((P × P) /
~R ) |
| 8 | | breq2 4037 |
. . . . 5
⊢
([〈𝑥, 𝑦〉]
~R = 𝐴 → (0R
<R [〈𝑥, 𝑦〉] ~R ↔
0R <R 𝐴)) |
| 9 | 8 | anbi1d 465 |
. . . 4
⊢
([〈𝑥, 𝑦〉]
~R = 𝐴 → ((0R
<R [〈𝑥, 𝑦〉] ~R ∧
0R <R [〈𝑧, 𝑤〉] ~R ) ↔
(0R <R 𝐴 ∧ 0R
<R [〈𝑧, 𝑤〉] ~R
))) |
| 10 | | oveq1 5929 |
. . . . 5
⊢
([〈𝑥, 𝑦〉]
~R = 𝐴 → ([〈𝑥, 𝑦〉] ~R
·R [〈𝑧, 𝑤〉] ~R ) =
(𝐴
·R [〈𝑧, 𝑤〉] ~R
)) |
| 11 | 10 | breq2d 4045 |
. . . 4
⊢
([〈𝑥, 𝑦〉]
~R = 𝐴 → (0R
<R ([〈𝑥, 𝑦〉] ~R
·R [〈𝑧, 𝑤〉] ~R ) ↔
0R <R (𝐴 ·R
[〈𝑧, 𝑤〉]
~R ))) |
| 12 | 9, 11 | imbi12d 234 |
. . 3
⊢
([〈𝑥, 𝑦〉]
~R = 𝐴 → (((0R
<R [〈𝑥, 𝑦〉] ~R ∧
0R <R [〈𝑧, 𝑤〉] ~R ) →
0R <R ([〈𝑥, 𝑦〉] ~R
·R [〈𝑧, 𝑤〉] ~R )) ↔
((0R <R 𝐴 ∧ 0R
<R [〈𝑧, 𝑤〉] ~R ) →
0R <R (𝐴 ·R
[〈𝑧, 𝑤〉]
~R )))) |
| 13 | | breq2 4037 |
. . . . 5
⊢
([〈𝑧, 𝑤〉]
~R = 𝐵 → (0R
<R [〈𝑧, 𝑤〉] ~R ↔
0R <R 𝐵)) |
| 14 | 13 | anbi2d 464 |
. . . 4
⊢
([〈𝑧, 𝑤〉]
~R = 𝐵 → ((0R
<R 𝐴 ∧ 0R
<R [〈𝑧, 𝑤〉] ~R ) ↔
(0R <R 𝐴 ∧ 0R
<R 𝐵))) |
| 15 | | oveq2 5930 |
. . . . 5
⊢
([〈𝑧, 𝑤〉]
~R = 𝐵 → (𝐴 ·R
[〈𝑧, 𝑤〉]
~R ) = (𝐴 ·R 𝐵)) |
| 16 | 15 | breq2d 4045 |
. . . 4
⊢
([〈𝑧, 𝑤〉]
~R = 𝐵 → (0R
<R (𝐴 ·R
[〈𝑧, 𝑤〉]
~R ) ↔ 0R
<R (𝐴 ·R 𝐵))) |
| 17 | 14, 16 | imbi12d 234 |
. . 3
⊢
([〈𝑧, 𝑤〉]
~R = 𝐵 → (((0R
<R 𝐴 ∧ 0R
<R [〈𝑧, 𝑤〉] ~R ) →
0R <R (𝐴 ·R
[〈𝑧, 𝑤〉]
~R )) ↔ ((0R
<R 𝐴 ∧ 0R
<R 𝐵) → 0R
<R (𝐴 ·R 𝐵)))) |
| 18 | | gt0srpr 7815 |
. . . . 5
⊢
(0R <R [〈𝑥, 𝑦〉] ~R ↔
𝑦<P 𝑥) |
| 19 | | gt0srpr 7815 |
. . . . 5
⊢
(0R <R [〈𝑧, 𝑤〉] ~R ↔
𝑤<P 𝑧) |
| 20 | 18, 19 | anbi12i 460 |
. . . 4
⊢
((0R <R
[〈𝑥, 𝑦〉]
~R ∧ 0R
<R [〈𝑧, 𝑤〉] ~R ) ↔
(𝑦<P 𝑥 ∧ 𝑤<P 𝑧)) |
| 21 | | ltexpri 7680 |
. . . . . . 7
⊢ (𝑦<P
𝑥 → ∃𝑣 ∈ P (𝑦 +P
𝑣) = 𝑥) |
| 22 | | ltexpri 7680 |
. . . . . . . . 9
⊢ (𝑤<P
𝑧 → ∃𝑢 ∈ P (𝑤 +P
𝑢) = 𝑧) |
| 23 | | addclpr 7604 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ P ∧
𝑔 ∈ P)
→ (𝑓
+P 𝑔) ∈ P) |
| 24 | 23 | adantl 277 |
. . . . . . . . . . . . 13
⊢
((((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) ∧ (𝑓 ∈ P ∧ 𝑔 ∈ P)) →
(𝑓
+P 𝑔) ∈ P) |
| 25 | | simplrr 536 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → (𝑦 +P 𝑣) = 𝑥) |
| 26 | | simplr 528 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P)) → 𝑦 ∈ P) |
| 27 | 26 | ad2antrr 488 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → 𝑦 ∈ P) |
| 28 | | simplrl 535 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → 𝑣 ∈ P) |
| 29 | 24, 27, 28 | caovcld 6077 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → (𝑦 +P 𝑣) ∈
P) |
| 30 | 25, 29 | eqeltrrd 2274 |
. . . . . . . . . . . . . 14
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → 𝑥 ∈ P) |
| 31 | | simplrr 536 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P)) ∧ (𝑣 ∈ P ∧ (𝑦 +P
𝑣) = 𝑥)) → 𝑤 ∈ P) |
| 32 | 31 | adantr 276 |
. . . . . . . . . . . . . 14
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → 𝑤 ∈ P) |
| 33 | | mulclpr 7639 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ P ∧
𝑤 ∈ P)
→ (𝑥
·P 𝑤) ∈ P) |
| 34 | 30, 32, 33 | syl2anc 411 |
. . . . . . . . . . . . 13
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → (𝑥 ·P 𝑤) ∈
P) |
| 35 | | simplrl 535 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P)) ∧ (𝑣 ∈ P ∧ (𝑦 +P
𝑣) = 𝑥)) → 𝑧 ∈ P) |
| 36 | 35 | adantr 276 |
. . . . . . . . . . . . . 14
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → 𝑧 ∈ P) |
| 37 | | mulclpr 7639 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ P ∧
𝑧 ∈ P)
→ (𝑦
·P 𝑧) ∈ P) |
| 38 | 27, 36, 37 | syl2anc 411 |
. . . . . . . . . . . . 13
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → (𝑦 ·P 𝑧) ∈
P) |
| 39 | 24, 34, 38 | caovcld 6077 |
. . . . . . . . . . . 12
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → ((𝑥 ·P 𝑤) +P
(𝑦
·P 𝑧)) ∈ P) |
| 40 | | simprl 529 |
. . . . . . . . . . . . 13
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → 𝑢 ∈ P) |
| 41 | | mulclpr 7639 |
. . . . . . . . . . . . 13
⊢ ((𝑣 ∈ P ∧
𝑢 ∈ P)
→ (𝑣
·P 𝑢) ∈ P) |
| 42 | 28, 40, 41 | syl2anc 411 |
. . . . . . . . . . . 12
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → (𝑣 ·P 𝑢) ∈
P) |
| 43 | | ltaddpr 7664 |
. . . . . . . . . . . 12
⊢ ((((𝑥
·P 𝑤) +P (𝑦
·P 𝑧)) ∈ P ∧ (𝑣
·P 𝑢) ∈ P) → ((𝑥
·P 𝑤) +P (𝑦
·P 𝑧))<P (((𝑥
·P 𝑤) +P (𝑦
·P 𝑧)) +P (𝑣
·P 𝑢))) |
| 44 | 39, 42, 43 | syl2anc 411 |
. . . . . . . . . . 11
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → ((𝑥 ·P 𝑤) +P
(𝑦
·P 𝑧))<P (((𝑥
·P 𝑤) +P (𝑦
·P 𝑧)) +P (𝑣
·P 𝑢))) |
| 45 | | simprr 531 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → (𝑤 +P 𝑢) = 𝑧) |
| 46 | | oveq12 5931 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑦 +P
𝑣) = 𝑥 ∧ (𝑤 +P 𝑢) = 𝑧) → ((𝑦 +P 𝑣)
·P (𝑤 +P 𝑢)) = (𝑥 ·P 𝑧)) |
| 47 | 46 | oveq1d 5937 |
. . . . . . . . . . . . . . 15
⊢ (((𝑦 +P
𝑣) = 𝑥 ∧ (𝑤 +P 𝑢) = 𝑧) → (((𝑦 +P 𝑣)
·P (𝑤 +P 𝑢)) +P
((𝑦
·P 𝑤) +P (𝑣
·P 𝑤))) = ((𝑥 ·P 𝑧) +P
((𝑦
·P 𝑤) +P (𝑣
·P 𝑤)))) |
| 48 | 25, 45, 47 | syl2anc 411 |
. . . . . . . . . . . . . 14
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → (((𝑦 +P 𝑣)
·P (𝑤 +P 𝑢)) +P
((𝑦
·P 𝑤) +P (𝑣
·P 𝑤))) = ((𝑥 ·P 𝑧) +P
((𝑦
·P 𝑤) +P (𝑣
·P 𝑤)))) |
| 49 | | distrprg 7655 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ P ∧
𝑤 ∈ P
∧ 𝑢 ∈
P) → (𝑦
·P (𝑤 +P 𝑢)) = ((𝑦 ·P 𝑤) +P
(𝑦
·P 𝑢))) |
| 50 | 27, 32, 40, 49 | syl3anc 1249 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → (𝑦 ·P (𝑤 +P
𝑢)) = ((𝑦 ·P 𝑤) +P
(𝑦
·P 𝑢))) |
| 51 | | oveq2 5930 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑤 +P
𝑢) = 𝑧 → (𝑦 ·P (𝑤 +P
𝑢)) = (𝑦 ·P 𝑧)) |
| 52 | 51 | adantl 277 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑢 ∈ P ∧
(𝑤
+P 𝑢) = 𝑧) → (𝑦 ·P (𝑤 +P
𝑢)) = (𝑦 ·P 𝑧)) |
| 53 | 52 | adantl 277 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → (𝑦 ·P (𝑤 +P
𝑢)) = (𝑦 ·P 𝑧)) |
| 54 | 50, 53 | eqtr3d 2231 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → ((𝑦 ·P 𝑤) +P
(𝑦
·P 𝑢)) = (𝑦 ·P 𝑧)) |
| 55 | 54 | oveq1d 5937 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → (((𝑦 ·P 𝑤) +P
(𝑦
·P 𝑢)) +P ((𝑣
·P 𝑤) +P (𝑣
·P 𝑢))) = ((𝑦 ·P 𝑧) +P
((𝑣
·P 𝑤) +P (𝑣
·P 𝑢)))) |
| 56 | | distrprg 7655 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓 ∈ P ∧
𝑔 ∈ P
∧ ℎ ∈
P) → (𝑓
·P (𝑔 +P ℎ)) = ((𝑓 ·P 𝑔) +P
(𝑓
·P ℎ))) |
| 57 | 56 | adantl 277 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) ∧ (𝑓 ∈ P ∧ 𝑔 ∈ P ∧
ℎ ∈ P))
→ (𝑓
·P (𝑔 +P ℎ)) = ((𝑓 ·P 𝑔) +P
(𝑓
·P ℎ))) |
| 58 | | mulcomprg 7647 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓 ∈ P ∧
𝑔 ∈ P)
→ (𝑓
·P 𝑔) = (𝑔 ·P 𝑓)) |
| 59 | 58 | adantl 277 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) ∧ (𝑓 ∈ P ∧ 𝑔 ∈ P)) →
(𝑓
·P 𝑔) = (𝑔 ·P 𝑓)) |
| 60 | 57, 27, 28, 32, 24, 59 | caovdir2d 6100 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → ((𝑦 +P 𝑣)
·P 𝑤) = ((𝑦 ·P 𝑤) +P
(𝑣
·P 𝑤))) |
| 61 | 57, 27, 28, 40, 24, 59 | caovdir2d 6100 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → ((𝑦 +P 𝑣)
·P 𝑢) = ((𝑦 ·P 𝑢) +P
(𝑣
·P 𝑢))) |
| 62 | 60, 61 | oveq12d 5940 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → (((𝑦 +P 𝑣)
·P 𝑤) +P ((𝑦 +P
𝑣)
·P 𝑢)) = (((𝑦 ·P 𝑤) +P
(𝑣
·P 𝑤)) +P ((𝑦
·P 𝑢) +P (𝑣
·P 𝑢)))) |
| 63 | | distrprg 7655 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑦 +P
𝑣) ∈ P
∧ 𝑤 ∈
P ∧ 𝑢
∈ P) → ((𝑦 +P 𝑣)
·P (𝑤 +P 𝑢)) = (((𝑦 +P 𝑣)
·P 𝑤) +P ((𝑦 +P
𝑣)
·P 𝑢))) |
| 64 | 29, 32, 40, 63 | syl3anc 1249 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → ((𝑦 +P 𝑣)
·P (𝑤 +P 𝑢)) = (((𝑦 +P 𝑣)
·P 𝑤) +P ((𝑦 +P
𝑣)
·P 𝑢))) |
| 65 | | mulclpr 7639 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ P ∧
𝑤 ∈ P)
→ (𝑦
·P 𝑤) ∈ P) |
| 66 | 27, 32, 65 | syl2anc 411 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → (𝑦 ·P 𝑤) ∈
P) |
| 67 | | mulclpr 7639 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ P ∧
𝑢 ∈ P)
→ (𝑦
·P 𝑢) ∈ P) |
| 68 | 27, 40, 67 | syl2anc 411 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → (𝑦 ·P 𝑢) ∈
P) |
| 69 | | mulclpr 7639 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑣 ∈ P ∧
𝑤 ∈ P)
→ (𝑣
·P 𝑤) ∈ P) |
| 70 | 28, 32, 69 | syl2anc 411 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → (𝑣 ·P 𝑤) ∈
P) |
| 71 | | addcomprg 7645 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓 ∈ P ∧
𝑔 ∈ P)
→ (𝑓
+P 𝑔) = (𝑔 +P 𝑓)) |
| 72 | 71 | adantl 277 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) ∧ (𝑓 ∈ P ∧ 𝑔 ∈ P)) →
(𝑓
+P 𝑔) = (𝑔 +P 𝑓)) |
| 73 | | addassprg 7646 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓 ∈ P ∧
𝑔 ∈ P
∧ ℎ ∈
P) → ((𝑓
+P 𝑔) +P ℎ) = (𝑓 +P (𝑔 +P
ℎ))) |
| 74 | 73 | adantl 277 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) ∧ (𝑓 ∈ P ∧ 𝑔 ∈ P ∧
ℎ ∈ P))
→ ((𝑓
+P 𝑔) +P ℎ) = (𝑓 +P (𝑔 +P
ℎ))) |
| 75 | 66, 68, 70, 72, 74, 42, 24 | caov4d 6108 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → (((𝑦 ·P 𝑤) +P
(𝑦
·P 𝑢)) +P ((𝑣
·P 𝑤) +P (𝑣
·P 𝑢))) = (((𝑦 ·P 𝑤) +P
(𝑣
·P 𝑤)) +P ((𝑦
·P 𝑢) +P (𝑣
·P 𝑢)))) |
| 76 | 62, 64, 75 | 3eqtr4d 2239 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → ((𝑦 +P 𝑣)
·P (𝑤 +P 𝑢)) = (((𝑦 ·P 𝑤) +P
(𝑦
·P 𝑢)) +P ((𝑣
·P 𝑤) +P (𝑣
·P 𝑢)))) |
| 77 | 70, 38, 42, 72, 74 | caov12d 6105 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → ((𝑣 ·P 𝑤) +P
((𝑦
·P 𝑧) +P (𝑣
·P 𝑢))) = ((𝑦 ·P 𝑧) +P
((𝑣
·P 𝑤) +P (𝑣
·P 𝑢)))) |
| 78 | 55, 76, 77 | 3eqtr4d 2239 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → ((𝑦 +P 𝑣)
·P (𝑤 +P 𝑢)) = ((𝑣 ·P 𝑤) +P
((𝑦
·P 𝑧) +P (𝑣
·P 𝑢)))) |
| 79 | | oveq1 5929 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 +P
𝑣) = 𝑥 → ((𝑦 +P 𝑣)
·P 𝑤) = (𝑥 ·P 𝑤)) |
| 80 | 79 | adantl 277 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑣 ∈ P ∧
(𝑦
+P 𝑣) = 𝑥) → ((𝑦 +P 𝑣)
·P 𝑤) = (𝑥 ·P 𝑤)) |
| 81 | 80 | ad2antlr 489 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → ((𝑦 +P 𝑣)
·P 𝑤) = (𝑥 ·P 𝑤)) |
| 82 | 60, 81 | eqtr3d 2231 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → ((𝑦 ·P 𝑤) +P
(𝑣
·P 𝑤)) = (𝑥 ·P 𝑤)) |
| 83 | 78, 82 | oveq12d 5940 |
. . . . . . . . . . . . . 14
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → (((𝑦 +P 𝑣)
·P (𝑤 +P 𝑢)) +P
((𝑦
·P 𝑤) +P (𝑣
·P 𝑤))) = (((𝑣 ·P 𝑤) +P
((𝑦
·P 𝑧) +P (𝑣
·P 𝑢))) +P (𝑥
·P 𝑤))) |
| 84 | 48, 83 | eqtr3d 2231 |
. . . . . . . . . . . . 13
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → ((𝑥 ·P 𝑧) +P
((𝑦
·P 𝑤) +P (𝑣
·P 𝑤))) = (((𝑣 ·P 𝑤) +P
((𝑦
·P 𝑧) +P (𝑣
·P 𝑢))) +P (𝑥
·P 𝑤))) |
| 85 | | mulclpr 7639 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ P ∧
𝑧 ∈ P)
→ (𝑥
·P 𝑧) ∈ P) |
| 86 | 30, 36, 85 | syl2anc 411 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → (𝑥 ·P 𝑧) ∈
P) |
| 87 | | addassprg 7646 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥
·P 𝑧) ∈ P ∧ (𝑦
·P 𝑤) ∈ P ∧ (𝑣
·P 𝑤) ∈ P) → (((𝑥
·P 𝑧) +P (𝑦
·P 𝑤)) +P (𝑣
·P 𝑤)) = ((𝑥 ·P 𝑧) +P
((𝑦
·P 𝑤) +P (𝑣
·P 𝑤)))) |
| 88 | 86, 66, 70, 87 | syl3anc 1249 |
. . . . . . . . . . . . . 14
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → (((𝑥 ·P 𝑧) +P
(𝑦
·P 𝑤)) +P (𝑣
·P 𝑤)) = ((𝑥 ·P 𝑧) +P
((𝑦
·P 𝑤) +P (𝑣
·P 𝑤)))) |
| 89 | | addclpr 7604 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥
·P 𝑧) ∈ P ∧ (𝑦
·P 𝑤) ∈ P) → ((𝑥
·P 𝑧) +P (𝑦
·P 𝑤)) ∈ P) |
| 90 | 86, 66, 89 | syl2anc 411 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → ((𝑥 ·P 𝑧) +P
(𝑦
·P 𝑤)) ∈ P) |
| 91 | | addcomprg 7645 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑥
·P 𝑧) +P (𝑦
·P 𝑤)) ∈ P ∧ (𝑣
·P 𝑤) ∈ P) → (((𝑥
·P 𝑧) +P (𝑦
·P 𝑤)) +P (𝑣
·P 𝑤)) = ((𝑣 ·P 𝑤) +P
((𝑥
·P 𝑧) +P (𝑦
·P 𝑤)))) |
| 92 | 90, 70, 91 | syl2anc 411 |
. . . . . . . . . . . . . 14
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → (((𝑥 ·P 𝑧) +P
(𝑦
·P 𝑤)) +P (𝑣
·P 𝑤)) = ((𝑣 ·P 𝑤) +P
((𝑥
·P 𝑧) +P (𝑦
·P 𝑤)))) |
| 93 | 88, 92 | eqtr3d 2231 |
. . . . . . . . . . . . 13
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → ((𝑥 ·P 𝑧) +P
((𝑦
·P 𝑤) +P (𝑣
·P 𝑤))) = ((𝑣 ·P 𝑤) +P
((𝑥
·P 𝑧) +P (𝑦
·P 𝑤)))) |
| 94 | 24, 38, 42 | caovcld 6077 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → ((𝑦 ·P 𝑧) +P
(𝑣
·P 𝑢)) ∈ P) |
| 95 | | addassprg 7646 |
. . . . . . . . . . . . . . 15
⊢ (((𝑣
·P 𝑤) ∈ P ∧ (𝑥
·P 𝑤) ∈ P ∧ ((𝑦
·P 𝑧) +P (𝑣
·P 𝑢)) ∈ P) → (((𝑣
·P 𝑤) +P (𝑥
·P 𝑤)) +P ((𝑦
·P 𝑧) +P (𝑣
·P 𝑢))) = ((𝑣 ·P 𝑤) +P
((𝑥
·P 𝑤) +P ((𝑦
·P 𝑧) +P (𝑣
·P 𝑢))))) |
| 96 | 70, 34, 94, 95 | syl3anc 1249 |
. . . . . . . . . . . . . 14
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → (((𝑣 ·P 𝑤) +P
(𝑥
·P 𝑤)) +P ((𝑦
·P 𝑧) +P (𝑣
·P 𝑢))) = ((𝑣 ·P 𝑤) +P
((𝑥
·P 𝑤) +P ((𝑦
·P 𝑧) +P (𝑣
·P 𝑢))))) |
| 97 | 70, 94, 34, 72, 74 | caov32d 6104 |
. . . . . . . . . . . . . 14
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → (((𝑣 ·P 𝑤) +P
((𝑦
·P 𝑧) +P (𝑣
·P 𝑢))) +P (𝑥
·P 𝑤)) = (((𝑣 ·P 𝑤) +P
(𝑥
·P 𝑤)) +P ((𝑦
·P 𝑧) +P (𝑣
·P 𝑢)))) |
| 98 | | addassprg 7646 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥
·P 𝑤) ∈ P ∧ (𝑦
·P 𝑧) ∈ P ∧ (𝑣
·P 𝑢) ∈ P) → (((𝑥
·P 𝑤) +P (𝑦
·P 𝑧)) +P (𝑣
·P 𝑢)) = ((𝑥 ·P 𝑤) +P
((𝑦
·P 𝑧) +P (𝑣
·P 𝑢)))) |
| 99 | 34, 38, 42, 98 | syl3anc 1249 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → (((𝑥 ·P 𝑤) +P
(𝑦
·P 𝑧)) +P (𝑣
·P 𝑢)) = ((𝑥 ·P 𝑤) +P
((𝑦
·P 𝑧) +P (𝑣
·P 𝑢)))) |
| 100 | 99 | oveq2d 5938 |
. . . . . . . . . . . . . 14
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → ((𝑣 ·P 𝑤) +P
(((𝑥
·P 𝑤) +P (𝑦
·P 𝑧)) +P (𝑣
·P 𝑢))) = ((𝑣 ·P 𝑤) +P
((𝑥
·P 𝑤) +P ((𝑦
·P 𝑧) +P (𝑣
·P 𝑢))))) |
| 101 | 96, 97, 100 | 3eqtr4d 2239 |
. . . . . . . . . . . . 13
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → (((𝑣 ·P 𝑤) +P
((𝑦
·P 𝑧) +P (𝑣
·P 𝑢))) +P (𝑥
·P 𝑤)) = ((𝑣 ·P 𝑤) +P
(((𝑥
·P 𝑤) +P (𝑦
·P 𝑧)) +P (𝑣
·P 𝑢)))) |
| 102 | 84, 93, 101 | 3eqtr3d 2237 |
. . . . . . . . . . . 12
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → ((𝑣 ·P 𝑤) +P
((𝑥
·P 𝑧) +P (𝑦
·P 𝑤))) = ((𝑣 ·P 𝑤) +P
(((𝑥
·P 𝑤) +P (𝑦
·P 𝑧)) +P (𝑣
·P 𝑢)))) |
| 103 | 24, 39, 42 | caovcld 6077 |
. . . . . . . . . . . . 13
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → (((𝑥 ·P 𝑤) +P
(𝑦
·P 𝑧)) +P (𝑣
·P 𝑢)) ∈ P) |
| 104 | | addcanprg 7683 |
. . . . . . . . . . . . 13
⊢ (((𝑣
·P 𝑤) ∈ P ∧ ((𝑥
·P 𝑧) +P (𝑦
·P 𝑤)) ∈ P ∧ (((𝑥
·P 𝑤) +P (𝑦
·P 𝑧)) +P (𝑣
·P 𝑢)) ∈ P) → (((𝑣
·P 𝑤) +P ((𝑥
·P 𝑧) +P (𝑦
·P 𝑤))) = ((𝑣 ·P 𝑤) +P
(((𝑥
·P 𝑤) +P (𝑦
·P 𝑧)) +P (𝑣
·P 𝑢))) → ((𝑥 ·P 𝑧) +P
(𝑦
·P 𝑤)) = (((𝑥 ·P 𝑤) +P
(𝑦
·P 𝑧)) +P (𝑣
·P 𝑢)))) |
| 105 | 70, 90, 103, 104 | syl3anc 1249 |
. . . . . . . . . . . 12
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → (((𝑣 ·P 𝑤) +P
((𝑥
·P 𝑧) +P (𝑦
·P 𝑤))) = ((𝑣 ·P 𝑤) +P
(((𝑥
·P 𝑤) +P (𝑦
·P 𝑧)) +P (𝑣
·P 𝑢))) → ((𝑥 ·P 𝑧) +P
(𝑦
·P 𝑤)) = (((𝑥 ·P 𝑤) +P
(𝑦
·P 𝑧)) +P (𝑣
·P 𝑢)))) |
| 106 | 102, 105 | mpd 13 |
. . . . . . . . . . 11
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → ((𝑥 ·P 𝑧) +P
(𝑦
·P 𝑤)) = (((𝑥 ·P 𝑤) +P
(𝑦
·P 𝑧)) +P (𝑣
·P 𝑢))) |
| 107 | 44, 106 | breqtrrd 4061 |
. . . . . . . . . 10
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → ((𝑥 ·P 𝑤) +P
(𝑦
·P 𝑧))<P ((𝑥
·P 𝑧) +P (𝑦
·P 𝑤))) |
| 108 | 107 | rexlimdvaa 2615 |
. . . . . . . . 9
⊢ ((((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P)) ∧ (𝑣 ∈ P ∧ (𝑦 +P
𝑣) = 𝑥)) → (∃𝑢 ∈ P (𝑤 +P 𝑢) = 𝑧 → ((𝑥 ·P 𝑤) +P
(𝑦
·P 𝑧))<P ((𝑥
·P 𝑧) +P (𝑦
·P 𝑤)))) |
| 109 | 22, 108 | syl5 32 |
. . . . . . . 8
⊢ ((((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P)) ∧ (𝑣 ∈ P ∧ (𝑦 +P
𝑣) = 𝑥)) → (𝑤<P 𝑧 → ((𝑥 ·P 𝑤) +P
(𝑦
·P 𝑧))<P ((𝑥
·P 𝑧) +P (𝑦
·P 𝑤)))) |
| 110 | 109 | rexlimdvaa 2615 |
. . . . . . 7
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P)) → (∃𝑣 ∈ P (𝑦 +P 𝑣) = 𝑥 → (𝑤<P 𝑧 → ((𝑥 ·P 𝑤) +P
(𝑦
·P 𝑧))<P ((𝑥
·P 𝑧) +P (𝑦
·P 𝑤))))) |
| 111 | 21, 110 | syl5 32 |
. . . . . 6
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P)) → (𝑦<P 𝑥 → (𝑤<P 𝑧 → ((𝑥 ·P 𝑤) +P
(𝑦
·P 𝑧))<P ((𝑥
·P 𝑧) +P (𝑦
·P 𝑤))))) |
| 112 | 111 | impd 254 |
. . . . 5
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P)) → ((𝑦<P 𝑥 ∧ 𝑤<P 𝑧) → ((𝑥 ·P 𝑤) +P
(𝑦
·P 𝑧))<P ((𝑥
·P 𝑧) +P (𝑦
·P 𝑤)))) |
| 113 | | mulsrpr 7813 |
. . . . . . 7
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P)) → ([〈𝑥, 𝑦〉] ~R
·R [〈𝑧, 𝑤〉] ~R ) =
[〈((𝑥
·P 𝑧) +P (𝑦
·P 𝑤)), ((𝑥 ·P 𝑤) +P
(𝑦
·P 𝑧))〉] ~R
) |
| 114 | 113 | breq2d 4045 |
. . . . . 6
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P)) → (0R
<R ([〈𝑥, 𝑦〉] ~R
·R [〈𝑧, 𝑤〉] ~R ) ↔
0R <R [〈((𝑥
·P 𝑧) +P (𝑦
·P 𝑤)), ((𝑥 ·P 𝑤) +P
(𝑦
·P 𝑧))〉] ~R
)) |
| 115 | | gt0srpr 7815 |
. . . . . 6
⊢
(0R <R
[〈((𝑥
·P 𝑧) +P (𝑦
·P 𝑤)), ((𝑥 ·P 𝑤) +P
(𝑦
·P 𝑧))〉] ~R ↔
((𝑥
·P 𝑤) +P (𝑦
·P 𝑧))<P ((𝑥
·P 𝑧) +P (𝑦
·P 𝑤))) |
| 116 | 114, 115 | bitrdi 196 |
. . . . 5
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P)) → (0R
<R ([〈𝑥, 𝑦〉] ~R
·R [〈𝑧, 𝑤〉] ~R ) ↔
((𝑥
·P 𝑤) +P (𝑦
·P 𝑧))<P ((𝑥
·P 𝑧) +P (𝑦
·P 𝑤)))) |
| 117 | 112, 116 | sylibrd 169 |
. . . 4
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P)) → ((𝑦<P 𝑥 ∧ 𝑤<P 𝑧) →
0R <R ([〈𝑥, 𝑦〉] ~R
·R [〈𝑧, 𝑤〉] ~R
))) |
| 118 | 20, 117 | biimtrid 152 |
. . 3
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P)) → ((0R
<R [〈𝑥, 𝑦〉] ~R ∧
0R <R [〈𝑧, 𝑤〉] ~R ) →
0R <R ([〈𝑥, 𝑦〉] ~R
·R [〈𝑧, 𝑤〉] ~R
))) |
| 119 | 7, 12, 17, 118 | 2ecoptocl 6682 |
. 2
⊢ ((𝐴 ∈ R ∧
𝐵 ∈ R)
→ ((0R <R 𝐴 ∧
0R <R 𝐵) → 0R
<R (𝐴 ·R 𝐵))) |
| 120 | 6, 119 | mpcom 36 |
1
⊢
((0R <R 𝐴 ∧
0R <R 𝐵) → 0R
<R (𝐴 ·R 𝐵)) |