ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgt0sr GIF version

Theorem mulgt0sr 7961
Description: The product of two positive signed reals is positive. (Contributed by NM, 13-May-1996.)
Assertion
Ref Expression
mulgt0sr ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 ·R 𝐵))

Proof of Theorem mulgt0sr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelsr 7921 . . . . 5 <R ⊆ (R × R)
21brel 4770 . . . 4 (0R <R 𝐴 → (0RR𝐴R))
32simprd 114 . . 3 (0R <R 𝐴𝐴R)
41brel 4770 . . . 4 (0R <R 𝐵 → (0RR𝐵R))
54simprd 114 . . 3 (0R <R 𝐵𝐵R)
63, 5anim12i 338 . 2 ((0R <R 𝐴 ∧ 0R <R 𝐵) → (𝐴R𝐵R))
7 df-nr 7910 . . 3 R = ((P × P) / ~R )
8 breq2 4086 . . . . 5 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (0R <R [⟨𝑥, 𝑦⟩] ~R ↔ 0R <R 𝐴))
98anbi1d 465 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ((0R <R [⟨𝑥, 𝑦⟩] ~R ∧ 0R <R [⟨𝑧, 𝑤⟩] ~R ) ↔ (0R <R 𝐴 ∧ 0R <R [⟨𝑧, 𝑤⟩] ~R )))
10 oveq1 6007 . . . . 5 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R ) = (𝐴 ·R [⟨𝑧, 𝑤⟩] ~R ))
1110breq2d 4094 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (0R <R ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R ) ↔ 0R <R (𝐴 ·R [⟨𝑧, 𝑤⟩] ~R )))
129, 11imbi12d 234 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (((0R <R [⟨𝑥, 𝑦⟩] ~R ∧ 0R <R [⟨𝑧, 𝑤⟩] ~R ) → 0R <R ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R )) ↔ ((0R <R 𝐴 ∧ 0R <R [⟨𝑧, 𝑤⟩] ~R ) → 0R <R (𝐴 ·R [⟨𝑧, 𝑤⟩] ~R ))))
13 breq2 4086 . . . . 5 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (0R <R [⟨𝑧, 𝑤⟩] ~R ↔ 0R <R 𝐵))
1413anbi2d 464 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → ((0R <R 𝐴 ∧ 0R <R [⟨𝑧, 𝑤⟩] ~R ) ↔ (0R <R 𝐴 ∧ 0R <R 𝐵)))
15 oveq2 6008 . . . . 5 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (𝐴 ·R [⟨𝑧, 𝑤⟩] ~R ) = (𝐴 ·R 𝐵))
1615breq2d 4094 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (0R <R (𝐴 ·R [⟨𝑧, 𝑤⟩] ~R ) ↔ 0R <R (𝐴 ·R 𝐵)))
1714, 16imbi12d 234 . . 3 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (((0R <R 𝐴 ∧ 0R <R [⟨𝑧, 𝑤⟩] ~R ) → 0R <R (𝐴 ·R [⟨𝑧, 𝑤⟩] ~R )) ↔ ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 ·R 𝐵))))
18 gt0srpr 7931 . . . . 5 (0R <R [⟨𝑥, 𝑦⟩] ~R𝑦<P 𝑥)
19 gt0srpr 7931 . . . . 5 (0R <R [⟨𝑧, 𝑤⟩] ~R𝑤<P 𝑧)
2018, 19anbi12i 460 . . . 4 ((0R <R [⟨𝑥, 𝑦⟩] ~R ∧ 0R <R [⟨𝑧, 𝑤⟩] ~R ) ↔ (𝑦<P 𝑥𝑤<P 𝑧))
21 ltexpri 7796 . . . . . . 7 (𝑦<P 𝑥 → ∃𝑣P (𝑦 +P 𝑣) = 𝑥)
22 ltexpri 7796 . . . . . . . . 9 (𝑤<P 𝑧 → ∃𝑢P (𝑤 +P 𝑢) = 𝑧)
23 addclpr 7720 . . . . . . . . . . . . . 14 ((𝑓P𝑔P) → (𝑓 +P 𝑔) ∈ P)
2423adantl 277 . . . . . . . . . . . . 13 ((((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) ∧ (𝑓P𝑔P)) → (𝑓 +P 𝑔) ∈ P)
25 simplrr 536 . . . . . . . . . . . . . . 15 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (𝑦 +P 𝑣) = 𝑥)
26 simplr 528 . . . . . . . . . . . . . . . . 17 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → 𝑦P)
2726ad2antrr 488 . . . . . . . . . . . . . . . 16 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → 𝑦P)
28 simplrl 535 . . . . . . . . . . . . . . . 16 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → 𝑣P)
2924, 27, 28caovcld 6158 . . . . . . . . . . . . . . 15 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (𝑦 +P 𝑣) ∈ P)
3025, 29eqeltrrd 2307 . . . . . . . . . . . . . 14 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → 𝑥P)
31 simplrr 536 . . . . . . . . . . . . . . 15 ((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) → 𝑤P)
3231adantr 276 . . . . . . . . . . . . . 14 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → 𝑤P)
33 mulclpr 7755 . . . . . . . . . . . . . 14 ((𝑥P𝑤P) → (𝑥 ·P 𝑤) ∈ P)
3430, 32, 33syl2anc 411 . . . . . . . . . . . . 13 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (𝑥 ·P 𝑤) ∈ P)
35 simplrl 535 . . . . . . . . . . . . . . 15 ((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) → 𝑧P)
3635adantr 276 . . . . . . . . . . . . . 14 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → 𝑧P)
37 mulclpr 7755 . . . . . . . . . . . . . 14 ((𝑦P𝑧P) → (𝑦 ·P 𝑧) ∈ P)
3827, 36, 37syl2anc 411 . . . . . . . . . . . . 13 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (𝑦 ·P 𝑧) ∈ P)
3924, 34, 38caovcld 6158 . . . . . . . . . . . 12 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P)
40 simprl 529 . . . . . . . . . . . . 13 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → 𝑢P)
41 mulclpr 7755 . . . . . . . . . . . . 13 ((𝑣P𝑢P) → (𝑣 ·P 𝑢) ∈ P)
4228, 40, 41syl2anc 411 . . . . . . . . . . . 12 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (𝑣 ·P 𝑢) ∈ P)
43 ltaddpr 7780 . . . . . . . . . . . 12 ((((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P ∧ (𝑣 ·P 𝑢) ∈ P) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢)))
4439, 42, 43syl2anc 411 . . . . . . . . . . 11 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢)))
45 simprr 531 . . . . . . . . . . . . . . 15 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (𝑤 +P 𝑢) = 𝑧)
46 oveq12 6009 . . . . . . . . . . . . . . . 16 (((𝑦 +P 𝑣) = 𝑥 ∧ (𝑤 +P 𝑢) = 𝑧) → ((𝑦 +P 𝑣) ·P (𝑤 +P 𝑢)) = (𝑥 ·P 𝑧))
4746oveq1d 6015 . . . . . . . . . . . . . . 15 (((𝑦 +P 𝑣) = 𝑥 ∧ (𝑤 +P 𝑢) = 𝑧) → (((𝑦 +P 𝑣) ·P (𝑤 +P 𝑢)) +P ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤))) = ((𝑥 ·P 𝑧) +P ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤))))
4825, 45, 47syl2anc 411 . . . . . . . . . . . . . 14 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (((𝑦 +P 𝑣) ·P (𝑤 +P 𝑢)) +P ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤))) = ((𝑥 ·P 𝑧) +P ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤))))
49 distrprg 7771 . . . . . . . . . . . . . . . . . . 19 ((𝑦P𝑤P𝑢P) → (𝑦 ·P (𝑤 +P 𝑢)) = ((𝑦 ·P 𝑤) +P (𝑦 ·P 𝑢)))
5027, 32, 40, 49syl3anc 1271 . . . . . . . . . . . . . . . . . 18 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (𝑦 ·P (𝑤 +P 𝑢)) = ((𝑦 ·P 𝑤) +P (𝑦 ·P 𝑢)))
51 oveq2 6008 . . . . . . . . . . . . . . . . . . . 20 ((𝑤 +P 𝑢) = 𝑧 → (𝑦 ·P (𝑤 +P 𝑢)) = (𝑦 ·P 𝑧))
5251adantl 277 . . . . . . . . . . . . . . . . . . 19 ((𝑢P ∧ (𝑤 +P 𝑢) = 𝑧) → (𝑦 ·P (𝑤 +P 𝑢)) = (𝑦 ·P 𝑧))
5352adantl 277 . . . . . . . . . . . . . . . . . 18 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (𝑦 ·P (𝑤 +P 𝑢)) = (𝑦 ·P 𝑧))
5450, 53eqtr3d 2264 . . . . . . . . . . . . . . . . 17 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑦 ·P 𝑤) +P (𝑦 ·P 𝑢)) = (𝑦 ·P 𝑧))
5554oveq1d 6015 . . . . . . . . . . . . . . . 16 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (((𝑦 ·P 𝑤) +P (𝑦 ·P 𝑢)) +P ((𝑣 ·P 𝑤) +P (𝑣 ·P 𝑢))) = ((𝑦 ·P 𝑧) +P ((𝑣 ·P 𝑤) +P (𝑣 ·P 𝑢))))
56 distrprg 7771 . . . . . . . . . . . . . . . . . . . 20 ((𝑓P𝑔PP) → (𝑓 ·P (𝑔 +P )) = ((𝑓 ·P 𝑔) +P (𝑓 ·P )))
5756adantl 277 . . . . . . . . . . . . . . . . . . 19 ((((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) ∧ (𝑓P𝑔PP)) → (𝑓 ·P (𝑔 +P )) = ((𝑓 ·P 𝑔) +P (𝑓 ·P )))
58 mulcomprg 7763 . . . . . . . . . . . . . . . . . . . 20 ((𝑓P𝑔P) → (𝑓 ·P 𝑔) = (𝑔 ·P 𝑓))
5958adantl 277 . . . . . . . . . . . . . . . . . . 19 ((((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) ∧ (𝑓P𝑔P)) → (𝑓 ·P 𝑔) = (𝑔 ·P 𝑓))
6057, 27, 28, 32, 24, 59caovdir2d 6181 . . . . . . . . . . . . . . . . . 18 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑦 +P 𝑣) ·P 𝑤) = ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤)))
6157, 27, 28, 40, 24, 59caovdir2d 6181 . . . . . . . . . . . . . . . . . 18 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑦 +P 𝑣) ·P 𝑢) = ((𝑦 ·P 𝑢) +P (𝑣 ·P 𝑢)))
6260, 61oveq12d 6018 . . . . . . . . . . . . . . . . 17 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (((𝑦 +P 𝑣) ·P 𝑤) +P ((𝑦 +P 𝑣) ·P 𝑢)) = (((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤)) +P ((𝑦 ·P 𝑢) +P (𝑣 ·P 𝑢))))
63 distrprg 7771 . . . . . . . . . . . . . . . . . 18 (((𝑦 +P 𝑣) ∈ P𝑤P𝑢P) → ((𝑦 +P 𝑣) ·P (𝑤 +P 𝑢)) = (((𝑦 +P 𝑣) ·P 𝑤) +P ((𝑦 +P 𝑣) ·P 𝑢)))
6429, 32, 40, 63syl3anc 1271 . . . . . . . . . . . . . . . . 17 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑦 +P 𝑣) ·P (𝑤 +P 𝑢)) = (((𝑦 +P 𝑣) ·P 𝑤) +P ((𝑦 +P 𝑣) ·P 𝑢)))
65 mulclpr 7755 . . . . . . . . . . . . . . . . . . 19 ((𝑦P𝑤P) → (𝑦 ·P 𝑤) ∈ P)
6627, 32, 65syl2anc 411 . . . . . . . . . . . . . . . . . 18 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (𝑦 ·P 𝑤) ∈ P)
67 mulclpr 7755 . . . . . . . . . . . . . . . . . . 19 ((𝑦P𝑢P) → (𝑦 ·P 𝑢) ∈ P)
6827, 40, 67syl2anc 411 . . . . . . . . . . . . . . . . . 18 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (𝑦 ·P 𝑢) ∈ P)
69 mulclpr 7755 . . . . . . . . . . . . . . . . . . 19 ((𝑣P𝑤P) → (𝑣 ·P 𝑤) ∈ P)
7028, 32, 69syl2anc 411 . . . . . . . . . . . . . . . . . 18 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (𝑣 ·P 𝑤) ∈ P)
71 addcomprg 7761 . . . . . . . . . . . . . . . . . . 19 ((𝑓P𝑔P) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
7271adantl 277 . . . . . . . . . . . . . . . . . 18 ((((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) ∧ (𝑓P𝑔P)) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
73 addassprg 7762 . . . . . . . . . . . . . . . . . . 19 ((𝑓P𝑔PP) → ((𝑓 +P 𝑔) +P ) = (𝑓 +P (𝑔 +P )))
7473adantl 277 . . . . . . . . . . . . . . . . . 18 ((((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) ∧ (𝑓P𝑔PP)) → ((𝑓 +P 𝑔) +P ) = (𝑓 +P (𝑔 +P )))
7566, 68, 70, 72, 74, 42, 24caov4d 6189 . . . . . . . . . . . . . . . . 17 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (((𝑦 ·P 𝑤) +P (𝑦 ·P 𝑢)) +P ((𝑣 ·P 𝑤) +P (𝑣 ·P 𝑢))) = (((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤)) +P ((𝑦 ·P 𝑢) +P (𝑣 ·P 𝑢))))
7662, 64, 753eqtr4d 2272 . . . . . . . . . . . . . . . 16 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑦 +P 𝑣) ·P (𝑤 +P 𝑢)) = (((𝑦 ·P 𝑤) +P (𝑦 ·P 𝑢)) +P ((𝑣 ·P 𝑤) +P (𝑣 ·P 𝑢))))
7770, 38, 42, 72, 74caov12d 6186 . . . . . . . . . . . . . . . 16 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑣 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))) = ((𝑦 ·P 𝑧) +P ((𝑣 ·P 𝑤) +P (𝑣 ·P 𝑢))))
7855, 76, 773eqtr4d 2272 . . . . . . . . . . . . . . 15 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑦 +P 𝑣) ·P (𝑤 +P 𝑢)) = ((𝑣 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))))
79 oveq1 6007 . . . . . . . . . . . . . . . . . 18 ((𝑦 +P 𝑣) = 𝑥 → ((𝑦 +P 𝑣) ·P 𝑤) = (𝑥 ·P 𝑤))
8079adantl 277 . . . . . . . . . . . . . . . . 17 ((𝑣P ∧ (𝑦 +P 𝑣) = 𝑥) → ((𝑦 +P 𝑣) ·P 𝑤) = (𝑥 ·P 𝑤))
8180ad2antlr 489 . . . . . . . . . . . . . . . 16 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑦 +P 𝑣) ·P 𝑤) = (𝑥 ·P 𝑤))
8260, 81eqtr3d 2264 . . . . . . . . . . . . . . 15 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤)) = (𝑥 ·P 𝑤))
8378, 82oveq12d 6018 . . . . . . . . . . . . . 14 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (((𝑦 +P 𝑣) ·P (𝑤 +P 𝑢)) +P ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤))) = (((𝑣 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))) +P (𝑥 ·P 𝑤)))
8448, 83eqtr3d 2264 . . . . . . . . . . . . 13 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑥 ·P 𝑧) +P ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤))) = (((𝑣 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))) +P (𝑥 ·P 𝑤)))
85 mulclpr 7755 . . . . . . . . . . . . . . . 16 ((𝑥P𝑧P) → (𝑥 ·P 𝑧) ∈ P)
8630, 36, 85syl2anc 411 . . . . . . . . . . . . . . 15 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (𝑥 ·P 𝑧) ∈ P)
87 addassprg 7762 . . . . . . . . . . . . . . 15 (((𝑥 ·P 𝑧) ∈ P ∧ (𝑦 ·P 𝑤) ∈ P ∧ (𝑣 ·P 𝑤) ∈ P) → (((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) +P (𝑣 ·P 𝑤)) = ((𝑥 ·P 𝑧) +P ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤))))
8886, 66, 70, 87syl3anc 1271 . . . . . . . . . . . . . 14 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) +P (𝑣 ·P 𝑤)) = ((𝑥 ·P 𝑧) +P ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤))))
89 addclpr 7720 . . . . . . . . . . . . . . . 16 (((𝑥 ·P 𝑧) ∈ P ∧ (𝑦 ·P 𝑤) ∈ P) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P)
9086, 66, 89syl2anc 411 . . . . . . . . . . . . . . 15 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P)
91 addcomprg 7761 . . . . . . . . . . . . . . 15 ((((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P ∧ (𝑣 ·P 𝑤) ∈ P) → (((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) +P (𝑣 ·P 𝑤)) = ((𝑣 ·P 𝑤) +P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))))
9290, 70, 91syl2anc 411 . . . . . . . . . . . . . 14 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) +P (𝑣 ·P 𝑤)) = ((𝑣 ·P 𝑤) +P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))))
9388, 92eqtr3d 2264 . . . . . . . . . . . . 13 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑥 ·P 𝑧) +P ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤))) = ((𝑣 ·P 𝑤) +P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))))
9424, 38, 42caovcld 6158 . . . . . . . . . . . . . . 15 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢)) ∈ P)
95 addassprg 7762 . . . . . . . . . . . . . . 15 (((𝑣 ·P 𝑤) ∈ P ∧ (𝑥 ·P 𝑤) ∈ P ∧ ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢)) ∈ P) → (((𝑣 ·P 𝑤) +P (𝑥 ·P 𝑤)) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))) = ((𝑣 ·P 𝑤) +P ((𝑥 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢)))))
9670, 34, 94, 95syl3anc 1271 . . . . . . . . . . . . . 14 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (((𝑣 ·P 𝑤) +P (𝑥 ·P 𝑤)) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))) = ((𝑣 ·P 𝑤) +P ((𝑥 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢)))))
9770, 94, 34, 72, 74caov32d 6185 . . . . . . . . . . . . . 14 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (((𝑣 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))) +P (𝑥 ·P 𝑤)) = (((𝑣 ·P 𝑤) +P (𝑥 ·P 𝑤)) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))))
98 addassprg 7762 . . . . . . . . . . . . . . . 16 (((𝑥 ·P 𝑤) ∈ P ∧ (𝑦 ·P 𝑧) ∈ P ∧ (𝑣 ·P 𝑢) ∈ P) → (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢)) = ((𝑥 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))))
9934, 38, 42, 98syl3anc 1271 . . . . . . . . . . . . . . 15 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢)) = ((𝑥 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))))
10099oveq2d 6016 . . . . . . . . . . . . . 14 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑣 ·P 𝑤) +P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢))) = ((𝑣 ·P 𝑤) +P ((𝑥 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢)))))
10196, 97, 1003eqtr4d 2272 . . . . . . . . . . . . 13 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (((𝑣 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))) +P (𝑥 ·P 𝑤)) = ((𝑣 ·P 𝑤) +P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢))))
10284, 93, 1013eqtr3d 2270 . . . . . . . . . . . 12 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑣 ·P 𝑤) +P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))) = ((𝑣 ·P 𝑤) +P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢))))
10324, 39, 42caovcld 6158 . . . . . . . . . . . . 13 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢)) ∈ P)
104 addcanprg 7799 . . . . . . . . . . . . 13 (((𝑣 ·P 𝑤) ∈ P ∧ ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P ∧ (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢)) ∈ P) → (((𝑣 ·P 𝑤) +P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))) = ((𝑣 ·P 𝑤) +P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢))) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) = (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢))))
10570, 90, 103, 104syl3anc 1271 . . . . . . . . . . . 12 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (((𝑣 ·P 𝑤) +P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))) = ((𝑣 ·P 𝑤) +P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢))) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) = (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢))))
106102, 105mpd 13 . . . . . . . . . . 11 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) = (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢)))
10744, 106breqtrrd 4110 . . . . . . . . . 10 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)))
108107rexlimdvaa 2649 . . . . . . . . 9 ((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) → (∃𝑢P (𝑤 +P 𝑢) = 𝑧 → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))))
10922, 108syl5 32 . . . . . . . 8 ((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) → (𝑤<P 𝑧 → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))))
110109rexlimdvaa 2649 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (∃𝑣P (𝑦 +P 𝑣) = 𝑥 → (𝑤<P 𝑧 → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)))))
11121, 110syl5 32 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑦<P 𝑥 → (𝑤<P 𝑧 → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)))))
112111impd 254 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑦<P 𝑥𝑤<P 𝑧) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))))
113 mulsrpr 7929 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R ) = [⟨((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))⟩] ~R )
114113breq2d 4094 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (0R <R ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R ) ↔ 0R <R [⟨((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))⟩] ~R ))
115 gt0srpr 7931 . . . . . 6 (0R <R [⟨((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))⟩] ~R ↔ ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)))
116114, 115bitrdi 196 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (0R <R ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R ) ↔ ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))))
117112, 116sylibrd 169 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑦<P 𝑥𝑤<P 𝑧) → 0R <R ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R )))
11820, 117biimtrid 152 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((0R <R [⟨𝑥, 𝑦⟩] ~R ∧ 0R <R [⟨𝑧, 𝑤⟩] ~R ) → 0R <R ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R )))
1197, 12, 17, 1182ecoptocl 6768 . 2 ((𝐴R𝐵R) → ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 ·R 𝐵)))
1206, 119mpcom 36 1 ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 ·R 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wcel 2200  wrex 2509  cop 3669   class class class wbr 4082  (class class class)co 6000  [cec 6676  Pcnp 7474   +P cpp 7476   ·P cmp 7477  <P cltp 7478   ~R cer 7479  Rcnr 7480  0Rc0r 7481   ·R cmr 7485   <R cltr 7486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-eprel 4379  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-1o 6560  df-2o 6561  df-oadd 6564  df-omul 6565  df-er 6678  df-ec 6680  df-qs 6684  df-ni 7487  df-pli 7488  df-mi 7489  df-lti 7490  df-plpq 7527  df-mpq 7528  df-enq 7530  df-nqqs 7531  df-plqqs 7532  df-mqqs 7533  df-1nqqs 7534  df-rq 7535  df-ltnqqs 7536  df-enq0 7607  df-nq0 7608  df-0nq0 7609  df-plq0 7610  df-mq0 7611  df-inp 7649  df-i1p 7650  df-iplp 7651  df-imp 7652  df-iltp 7653  df-enr 7909  df-nr 7910  df-mr 7912  df-ltr 7913  df-0r 7914
This theorem is referenced by:  axpre-mulgt0  8070
  Copyright terms: Public domain W3C validator