Step | Hyp | Ref
| Expression |
1 | | ltrelsr 7700 |
. . . . 5
⊢
<R ⊆ (R ×
R) |
2 | 1 | brel 4663 |
. . . 4
⊢
(0R <R 𝐴 →
(0R ∈ R ∧ 𝐴 ∈ R)) |
3 | 2 | simprd 113 |
. . 3
⊢
(0R <R 𝐴 → 𝐴 ∈ R) |
4 | 1 | brel 4663 |
. . . 4
⊢
(0R <R 𝐵 →
(0R ∈ R ∧ 𝐵 ∈ R)) |
5 | 4 | simprd 113 |
. . 3
⊢
(0R <R 𝐵 → 𝐵 ∈ R) |
6 | 3, 5 | anim12i 336 |
. 2
⊢
((0R <R 𝐴 ∧
0R <R 𝐵) → (𝐴 ∈ R ∧ 𝐵 ∈
R)) |
7 | | df-nr 7689 |
. . 3
⊢
R = ((P × P) /
~R ) |
8 | | breq2 3993 |
. . . . 5
⊢
([〈𝑥, 𝑦〉]
~R = 𝐴 → (0R
<R [〈𝑥, 𝑦〉] ~R ↔
0R <R 𝐴)) |
9 | 8 | anbi1d 462 |
. . . 4
⊢
([〈𝑥, 𝑦〉]
~R = 𝐴 → ((0R
<R [〈𝑥, 𝑦〉] ~R ∧
0R <R [〈𝑧, 𝑤〉] ~R ) ↔
(0R <R 𝐴 ∧ 0R
<R [〈𝑧, 𝑤〉] ~R
))) |
10 | | oveq1 5860 |
. . . . 5
⊢
([〈𝑥, 𝑦〉]
~R = 𝐴 → ([〈𝑥, 𝑦〉] ~R
·R [〈𝑧, 𝑤〉] ~R ) =
(𝐴
·R [〈𝑧, 𝑤〉] ~R
)) |
11 | 10 | breq2d 4001 |
. . . 4
⊢
([〈𝑥, 𝑦〉]
~R = 𝐴 → (0R
<R ([〈𝑥, 𝑦〉] ~R
·R [〈𝑧, 𝑤〉] ~R ) ↔
0R <R (𝐴 ·R
[〈𝑧, 𝑤〉]
~R ))) |
12 | 9, 11 | imbi12d 233 |
. . 3
⊢
([〈𝑥, 𝑦〉]
~R = 𝐴 → (((0R
<R [〈𝑥, 𝑦〉] ~R ∧
0R <R [〈𝑧, 𝑤〉] ~R ) →
0R <R ([〈𝑥, 𝑦〉] ~R
·R [〈𝑧, 𝑤〉] ~R )) ↔
((0R <R 𝐴 ∧ 0R
<R [〈𝑧, 𝑤〉] ~R ) →
0R <R (𝐴 ·R
[〈𝑧, 𝑤〉]
~R )))) |
13 | | breq2 3993 |
. . . . 5
⊢
([〈𝑧, 𝑤〉]
~R = 𝐵 → (0R
<R [〈𝑧, 𝑤〉] ~R ↔
0R <R 𝐵)) |
14 | 13 | anbi2d 461 |
. . . 4
⊢
([〈𝑧, 𝑤〉]
~R = 𝐵 → ((0R
<R 𝐴 ∧ 0R
<R [〈𝑧, 𝑤〉] ~R ) ↔
(0R <R 𝐴 ∧ 0R
<R 𝐵))) |
15 | | oveq2 5861 |
. . . . 5
⊢
([〈𝑧, 𝑤〉]
~R = 𝐵 → (𝐴 ·R
[〈𝑧, 𝑤〉]
~R ) = (𝐴 ·R 𝐵)) |
16 | 15 | breq2d 4001 |
. . . 4
⊢
([〈𝑧, 𝑤〉]
~R = 𝐵 → (0R
<R (𝐴 ·R
[〈𝑧, 𝑤〉]
~R ) ↔ 0R
<R (𝐴 ·R 𝐵))) |
17 | 14, 16 | imbi12d 233 |
. . 3
⊢
([〈𝑧, 𝑤〉]
~R = 𝐵 → (((0R
<R 𝐴 ∧ 0R
<R [〈𝑧, 𝑤〉] ~R ) →
0R <R (𝐴 ·R
[〈𝑧, 𝑤〉]
~R )) ↔ ((0R
<R 𝐴 ∧ 0R
<R 𝐵) → 0R
<R (𝐴 ·R 𝐵)))) |
18 | | gt0srpr 7710 |
. . . . 5
⊢
(0R <R [〈𝑥, 𝑦〉] ~R ↔
𝑦<P 𝑥) |
19 | | gt0srpr 7710 |
. . . . 5
⊢
(0R <R [〈𝑧, 𝑤〉] ~R ↔
𝑤<P 𝑧) |
20 | 18, 19 | anbi12i 457 |
. . . 4
⊢
((0R <R
[〈𝑥, 𝑦〉]
~R ∧ 0R
<R [〈𝑧, 𝑤〉] ~R ) ↔
(𝑦<P 𝑥 ∧ 𝑤<P 𝑧)) |
21 | | ltexpri 7575 |
. . . . . . 7
⊢ (𝑦<P
𝑥 → ∃𝑣 ∈ P (𝑦 +P
𝑣) = 𝑥) |
22 | | ltexpri 7575 |
. . . . . . . . 9
⊢ (𝑤<P
𝑧 → ∃𝑢 ∈ P (𝑤 +P
𝑢) = 𝑧) |
23 | | addclpr 7499 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ P ∧
𝑔 ∈ P)
→ (𝑓
+P 𝑔) ∈ P) |
24 | 23 | adantl 275 |
. . . . . . . . . . . . 13
⊢
((((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) ∧ (𝑓 ∈ P ∧ 𝑔 ∈ P)) →
(𝑓
+P 𝑔) ∈ P) |
25 | | simplrr 531 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → (𝑦 +P 𝑣) = 𝑥) |
26 | | simplr 525 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P)) → 𝑦 ∈ P) |
27 | 26 | ad2antrr 485 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → 𝑦 ∈ P) |
28 | | simplrl 530 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → 𝑣 ∈ P) |
29 | 24, 27, 28 | caovcld 6006 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → (𝑦 +P 𝑣) ∈
P) |
30 | 25, 29 | eqeltrrd 2248 |
. . . . . . . . . . . . . 14
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → 𝑥 ∈ P) |
31 | | simplrr 531 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P)) ∧ (𝑣 ∈ P ∧ (𝑦 +P
𝑣) = 𝑥)) → 𝑤 ∈ P) |
32 | 31 | adantr 274 |
. . . . . . . . . . . . . 14
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → 𝑤 ∈ P) |
33 | | mulclpr 7534 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ P ∧
𝑤 ∈ P)
→ (𝑥
·P 𝑤) ∈ P) |
34 | 30, 32, 33 | syl2anc 409 |
. . . . . . . . . . . . 13
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → (𝑥 ·P 𝑤) ∈
P) |
35 | | simplrl 530 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P)) ∧ (𝑣 ∈ P ∧ (𝑦 +P
𝑣) = 𝑥)) → 𝑧 ∈ P) |
36 | 35 | adantr 274 |
. . . . . . . . . . . . . 14
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → 𝑧 ∈ P) |
37 | | mulclpr 7534 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ P ∧
𝑧 ∈ P)
→ (𝑦
·P 𝑧) ∈ P) |
38 | 27, 36, 37 | syl2anc 409 |
. . . . . . . . . . . . 13
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → (𝑦 ·P 𝑧) ∈
P) |
39 | 24, 34, 38 | caovcld 6006 |
. . . . . . . . . . . 12
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → ((𝑥 ·P 𝑤) +P
(𝑦
·P 𝑧)) ∈ P) |
40 | | simprl 526 |
. . . . . . . . . . . . 13
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → 𝑢 ∈ P) |
41 | | mulclpr 7534 |
. . . . . . . . . . . . 13
⊢ ((𝑣 ∈ P ∧
𝑢 ∈ P)
→ (𝑣
·P 𝑢) ∈ P) |
42 | 28, 40, 41 | syl2anc 409 |
. . . . . . . . . . . 12
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → (𝑣 ·P 𝑢) ∈
P) |
43 | | ltaddpr 7559 |
. . . . . . . . . . . 12
⊢ ((((𝑥
·P 𝑤) +P (𝑦
·P 𝑧)) ∈ P ∧ (𝑣
·P 𝑢) ∈ P) → ((𝑥
·P 𝑤) +P (𝑦
·P 𝑧))<P (((𝑥
·P 𝑤) +P (𝑦
·P 𝑧)) +P (𝑣
·P 𝑢))) |
44 | 39, 42, 43 | syl2anc 409 |
. . . . . . . . . . 11
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → ((𝑥 ·P 𝑤) +P
(𝑦
·P 𝑧))<P (((𝑥
·P 𝑤) +P (𝑦
·P 𝑧)) +P (𝑣
·P 𝑢))) |
45 | | simprr 527 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → (𝑤 +P 𝑢) = 𝑧) |
46 | | oveq12 5862 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑦 +P
𝑣) = 𝑥 ∧ (𝑤 +P 𝑢) = 𝑧) → ((𝑦 +P 𝑣)
·P (𝑤 +P 𝑢)) = (𝑥 ·P 𝑧)) |
47 | 46 | oveq1d 5868 |
. . . . . . . . . . . . . . 15
⊢ (((𝑦 +P
𝑣) = 𝑥 ∧ (𝑤 +P 𝑢) = 𝑧) → (((𝑦 +P 𝑣)
·P (𝑤 +P 𝑢)) +P
((𝑦
·P 𝑤) +P (𝑣
·P 𝑤))) = ((𝑥 ·P 𝑧) +P
((𝑦
·P 𝑤) +P (𝑣
·P 𝑤)))) |
48 | 25, 45, 47 | syl2anc 409 |
. . . . . . . . . . . . . 14
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → (((𝑦 +P 𝑣)
·P (𝑤 +P 𝑢)) +P
((𝑦
·P 𝑤) +P (𝑣
·P 𝑤))) = ((𝑥 ·P 𝑧) +P
((𝑦
·P 𝑤) +P (𝑣
·P 𝑤)))) |
49 | | distrprg 7550 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ P ∧
𝑤 ∈ P
∧ 𝑢 ∈
P) → (𝑦
·P (𝑤 +P 𝑢)) = ((𝑦 ·P 𝑤) +P
(𝑦
·P 𝑢))) |
50 | 27, 32, 40, 49 | syl3anc 1233 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → (𝑦 ·P (𝑤 +P
𝑢)) = ((𝑦 ·P 𝑤) +P
(𝑦
·P 𝑢))) |
51 | | oveq2 5861 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑤 +P
𝑢) = 𝑧 → (𝑦 ·P (𝑤 +P
𝑢)) = (𝑦 ·P 𝑧)) |
52 | 51 | adantl 275 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑢 ∈ P ∧
(𝑤
+P 𝑢) = 𝑧) → (𝑦 ·P (𝑤 +P
𝑢)) = (𝑦 ·P 𝑧)) |
53 | 52 | adantl 275 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → (𝑦 ·P (𝑤 +P
𝑢)) = (𝑦 ·P 𝑧)) |
54 | 50, 53 | eqtr3d 2205 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → ((𝑦 ·P 𝑤) +P
(𝑦
·P 𝑢)) = (𝑦 ·P 𝑧)) |
55 | 54 | oveq1d 5868 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → (((𝑦 ·P 𝑤) +P
(𝑦
·P 𝑢)) +P ((𝑣
·P 𝑤) +P (𝑣
·P 𝑢))) = ((𝑦 ·P 𝑧) +P
((𝑣
·P 𝑤) +P (𝑣
·P 𝑢)))) |
56 | | distrprg 7550 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓 ∈ P ∧
𝑔 ∈ P
∧ ℎ ∈
P) → (𝑓
·P (𝑔 +P ℎ)) = ((𝑓 ·P 𝑔) +P
(𝑓
·P ℎ))) |
57 | 56 | adantl 275 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) ∧ (𝑓 ∈ P ∧ 𝑔 ∈ P ∧
ℎ ∈ P))
→ (𝑓
·P (𝑔 +P ℎ)) = ((𝑓 ·P 𝑔) +P
(𝑓
·P ℎ))) |
58 | | mulcomprg 7542 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓 ∈ P ∧
𝑔 ∈ P)
→ (𝑓
·P 𝑔) = (𝑔 ·P 𝑓)) |
59 | 58 | adantl 275 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) ∧ (𝑓 ∈ P ∧ 𝑔 ∈ P)) →
(𝑓
·P 𝑔) = (𝑔 ·P 𝑓)) |
60 | 57, 27, 28, 32, 24, 59 | caovdir2d 6029 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → ((𝑦 +P 𝑣)
·P 𝑤) = ((𝑦 ·P 𝑤) +P
(𝑣
·P 𝑤))) |
61 | 57, 27, 28, 40, 24, 59 | caovdir2d 6029 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → ((𝑦 +P 𝑣)
·P 𝑢) = ((𝑦 ·P 𝑢) +P
(𝑣
·P 𝑢))) |
62 | 60, 61 | oveq12d 5871 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → (((𝑦 +P 𝑣)
·P 𝑤) +P ((𝑦 +P
𝑣)
·P 𝑢)) = (((𝑦 ·P 𝑤) +P
(𝑣
·P 𝑤)) +P ((𝑦
·P 𝑢) +P (𝑣
·P 𝑢)))) |
63 | | distrprg 7550 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑦 +P
𝑣) ∈ P
∧ 𝑤 ∈
P ∧ 𝑢
∈ P) → ((𝑦 +P 𝑣)
·P (𝑤 +P 𝑢)) = (((𝑦 +P 𝑣)
·P 𝑤) +P ((𝑦 +P
𝑣)
·P 𝑢))) |
64 | 29, 32, 40, 63 | syl3anc 1233 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → ((𝑦 +P 𝑣)
·P (𝑤 +P 𝑢)) = (((𝑦 +P 𝑣)
·P 𝑤) +P ((𝑦 +P
𝑣)
·P 𝑢))) |
65 | | mulclpr 7534 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ P ∧
𝑤 ∈ P)
→ (𝑦
·P 𝑤) ∈ P) |
66 | 27, 32, 65 | syl2anc 409 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → (𝑦 ·P 𝑤) ∈
P) |
67 | | mulclpr 7534 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ P ∧
𝑢 ∈ P)
→ (𝑦
·P 𝑢) ∈ P) |
68 | 27, 40, 67 | syl2anc 409 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → (𝑦 ·P 𝑢) ∈
P) |
69 | | mulclpr 7534 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑣 ∈ P ∧
𝑤 ∈ P)
→ (𝑣
·P 𝑤) ∈ P) |
70 | 28, 32, 69 | syl2anc 409 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → (𝑣 ·P 𝑤) ∈
P) |
71 | | addcomprg 7540 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓 ∈ P ∧
𝑔 ∈ P)
→ (𝑓
+P 𝑔) = (𝑔 +P 𝑓)) |
72 | 71 | adantl 275 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) ∧ (𝑓 ∈ P ∧ 𝑔 ∈ P)) →
(𝑓
+P 𝑔) = (𝑔 +P 𝑓)) |
73 | | addassprg 7541 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓 ∈ P ∧
𝑔 ∈ P
∧ ℎ ∈
P) → ((𝑓
+P 𝑔) +P ℎ) = (𝑓 +P (𝑔 +P
ℎ))) |
74 | 73 | adantl 275 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) ∧ (𝑓 ∈ P ∧ 𝑔 ∈ P ∧
ℎ ∈ P))
→ ((𝑓
+P 𝑔) +P ℎ) = (𝑓 +P (𝑔 +P
ℎ))) |
75 | 66, 68, 70, 72, 74, 42, 24 | caov4d 6037 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → (((𝑦 ·P 𝑤) +P
(𝑦
·P 𝑢)) +P ((𝑣
·P 𝑤) +P (𝑣
·P 𝑢))) = (((𝑦 ·P 𝑤) +P
(𝑣
·P 𝑤)) +P ((𝑦
·P 𝑢) +P (𝑣
·P 𝑢)))) |
76 | 62, 64, 75 | 3eqtr4d 2213 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → ((𝑦 +P 𝑣)
·P (𝑤 +P 𝑢)) = (((𝑦 ·P 𝑤) +P
(𝑦
·P 𝑢)) +P ((𝑣
·P 𝑤) +P (𝑣
·P 𝑢)))) |
77 | 70, 38, 42, 72, 74 | caov12d 6034 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → ((𝑣 ·P 𝑤) +P
((𝑦
·P 𝑧) +P (𝑣
·P 𝑢))) = ((𝑦 ·P 𝑧) +P
((𝑣
·P 𝑤) +P (𝑣
·P 𝑢)))) |
78 | 55, 76, 77 | 3eqtr4d 2213 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → ((𝑦 +P 𝑣)
·P (𝑤 +P 𝑢)) = ((𝑣 ·P 𝑤) +P
((𝑦
·P 𝑧) +P (𝑣
·P 𝑢)))) |
79 | | oveq1 5860 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 +P
𝑣) = 𝑥 → ((𝑦 +P 𝑣)
·P 𝑤) = (𝑥 ·P 𝑤)) |
80 | 79 | adantl 275 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑣 ∈ P ∧
(𝑦
+P 𝑣) = 𝑥) → ((𝑦 +P 𝑣)
·P 𝑤) = (𝑥 ·P 𝑤)) |
81 | 80 | ad2antlr 486 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → ((𝑦 +P 𝑣)
·P 𝑤) = (𝑥 ·P 𝑤)) |
82 | 60, 81 | eqtr3d 2205 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → ((𝑦 ·P 𝑤) +P
(𝑣
·P 𝑤)) = (𝑥 ·P 𝑤)) |
83 | 78, 82 | oveq12d 5871 |
. . . . . . . . . . . . . 14
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → (((𝑦 +P 𝑣)
·P (𝑤 +P 𝑢)) +P
((𝑦
·P 𝑤) +P (𝑣
·P 𝑤))) = (((𝑣 ·P 𝑤) +P
((𝑦
·P 𝑧) +P (𝑣
·P 𝑢))) +P (𝑥
·P 𝑤))) |
84 | 48, 83 | eqtr3d 2205 |
. . . . . . . . . . . . 13
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → ((𝑥 ·P 𝑧) +P
((𝑦
·P 𝑤) +P (𝑣
·P 𝑤))) = (((𝑣 ·P 𝑤) +P
((𝑦
·P 𝑧) +P (𝑣
·P 𝑢))) +P (𝑥
·P 𝑤))) |
85 | | mulclpr 7534 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ P ∧
𝑧 ∈ P)
→ (𝑥
·P 𝑧) ∈ P) |
86 | 30, 36, 85 | syl2anc 409 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → (𝑥 ·P 𝑧) ∈
P) |
87 | | addassprg 7541 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥
·P 𝑧) ∈ P ∧ (𝑦
·P 𝑤) ∈ P ∧ (𝑣
·P 𝑤) ∈ P) → (((𝑥
·P 𝑧) +P (𝑦
·P 𝑤)) +P (𝑣
·P 𝑤)) = ((𝑥 ·P 𝑧) +P
((𝑦
·P 𝑤) +P (𝑣
·P 𝑤)))) |
88 | 86, 66, 70, 87 | syl3anc 1233 |
. . . . . . . . . . . . . 14
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → (((𝑥 ·P 𝑧) +P
(𝑦
·P 𝑤)) +P (𝑣
·P 𝑤)) = ((𝑥 ·P 𝑧) +P
((𝑦
·P 𝑤) +P (𝑣
·P 𝑤)))) |
89 | | addclpr 7499 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥
·P 𝑧) ∈ P ∧ (𝑦
·P 𝑤) ∈ P) → ((𝑥
·P 𝑧) +P (𝑦
·P 𝑤)) ∈ P) |
90 | 86, 66, 89 | syl2anc 409 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → ((𝑥 ·P 𝑧) +P
(𝑦
·P 𝑤)) ∈ P) |
91 | | addcomprg 7540 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑥
·P 𝑧) +P (𝑦
·P 𝑤)) ∈ P ∧ (𝑣
·P 𝑤) ∈ P) → (((𝑥
·P 𝑧) +P (𝑦
·P 𝑤)) +P (𝑣
·P 𝑤)) = ((𝑣 ·P 𝑤) +P
((𝑥
·P 𝑧) +P (𝑦
·P 𝑤)))) |
92 | 90, 70, 91 | syl2anc 409 |
. . . . . . . . . . . . . 14
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → (((𝑥 ·P 𝑧) +P
(𝑦
·P 𝑤)) +P (𝑣
·P 𝑤)) = ((𝑣 ·P 𝑤) +P
((𝑥
·P 𝑧) +P (𝑦
·P 𝑤)))) |
93 | 88, 92 | eqtr3d 2205 |
. . . . . . . . . . . . 13
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → ((𝑥 ·P 𝑧) +P
((𝑦
·P 𝑤) +P (𝑣
·P 𝑤))) = ((𝑣 ·P 𝑤) +P
((𝑥
·P 𝑧) +P (𝑦
·P 𝑤)))) |
94 | 24, 38, 42 | caovcld 6006 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → ((𝑦 ·P 𝑧) +P
(𝑣
·P 𝑢)) ∈ P) |
95 | | addassprg 7541 |
. . . . . . . . . . . . . . 15
⊢ (((𝑣
·P 𝑤) ∈ P ∧ (𝑥
·P 𝑤) ∈ P ∧ ((𝑦
·P 𝑧) +P (𝑣
·P 𝑢)) ∈ P) → (((𝑣
·P 𝑤) +P (𝑥
·P 𝑤)) +P ((𝑦
·P 𝑧) +P (𝑣
·P 𝑢))) = ((𝑣 ·P 𝑤) +P
((𝑥
·P 𝑤) +P ((𝑦
·P 𝑧) +P (𝑣
·P 𝑢))))) |
96 | 70, 34, 94, 95 | syl3anc 1233 |
. . . . . . . . . . . . . 14
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → (((𝑣 ·P 𝑤) +P
(𝑥
·P 𝑤)) +P ((𝑦
·P 𝑧) +P (𝑣
·P 𝑢))) = ((𝑣 ·P 𝑤) +P
((𝑥
·P 𝑤) +P ((𝑦
·P 𝑧) +P (𝑣
·P 𝑢))))) |
97 | 70, 94, 34, 72, 74 | caov32d 6033 |
. . . . . . . . . . . . . 14
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → (((𝑣 ·P 𝑤) +P
((𝑦
·P 𝑧) +P (𝑣
·P 𝑢))) +P (𝑥
·P 𝑤)) = (((𝑣 ·P 𝑤) +P
(𝑥
·P 𝑤)) +P ((𝑦
·P 𝑧) +P (𝑣
·P 𝑢)))) |
98 | | addassprg 7541 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥
·P 𝑤) ∈ P ∧ (𝑦
·P 𝑧) ∈ P ∧ (𝑣
·P 𝑢) ∈ P) → (((𝑥
·P 𝑤) +P (𝑦
·P 𝑧)) +P (𝑣
·P 𝑢)) = ((𝑥 ·P 𝑤) +P
((𝑦
·P 𝑧) +P (𝑣
·P 𝑢)))) |
99 | 34, 38, 42, 98 | syl3anc 1233 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → (((𝑥 ·P 𝑤) +P
(𝑦
·P 𝑧)) +P (𝑣
·P 𝑢)) = ((𝑥 ·P 𝑤) +P
((𝑦
·P 𝑧) +P (𝑣
·P 𝑢)))) |
100 | 99 | oveq2d 5869 |
. . . . . . . . . . . . . 14
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → ((𝑣 ·P 𝑤) +P
(((𝑥
·P 𝑤) +P (𝑦
·P 𝑧)) +P (𝑣
·P 𝑢))) = ((𝑣 ·P 𝑤) +P
((𝑥
·P 𝑤) +P ((𝑦
·P 𝑧) +P (𝑣
·P 𝑢))))) |
101 | 96, 97, 100 | 3eqtr4d 2213 |
. . . . . . . . . . . . 13
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → (((𝑣 ·P 𝑤) +P
((𝑦
·P 𝑧) +P (𝑣
·P 𝑢))) +P (𝑥
·P 𝑤)) = ((𝑣 ·P 𝑤) +P
(((𝑥
·P 𝑤) +P (𝑦
·P 𝑧)) +P (𝑣
·P 𝑢)))) |
102 | 84, 93, 101 | 3eqtr3d 2211 |
. . . . . . . . . . . 12
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → ((𝑣 ·P 𝑤) +P
((𝑥
·P 𝑧) +P (𝑦
·P 𝑤))) = ((𝑣 ·P 𝑤) +P
(((𝑥
·P 𝑤) +P (𝑦
·P 𝑧)) +P (𝑣
·P 𝑢)))) |
103 | 24, 39, 42 | caovcld 6006 |
. . . . . . . . . . . . 13
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → (((𝑥 ·P 𝑤) +P
(𝑦
·P 𝑧)) +P (𝑣
·P 𝑢)) ∈ P) |
104 | | addcanprg 7578 |
. . . . . . . . . . . . 13
⊢ (((𝑣
·P 𝑤) ∈ P ∧ ((𝑥
·P 𝑧) +P (𝑦
·P 𝑤)) ∈ P ∧ (((𝑥
·P 𝑤) +P (𝑦
·P 𝑧)) +P (𝑣
·P 𝑢)) ∈ P) → (((𝑣
·P 𝑤) +P ((𝑥
·P 𝑧) +P (𝑦
·P 𝑤))) = ((𝑣 ·P 𝑤) +P
(((𝑥
·P 𝑤) +P (𝑦
·P 𝑧)) +P (𝑣
·P 𝑢))) → ((𝑥 ·P 𝑧) +P
(𝑦
·P 𝑤)) = (((𝑥 ·P 𝑤) +P
(𝑦
·P 𝑧)) +P (𝑣
·P 𝑢)))) |
105 | 70, 90, 103, 104 | syl3anc 1233 |
. . . . . . . . . . . 12
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → (((𝑣 ·P 𝑤) +P
((𝑥
·P 𝑧) +P (𝑦
·P 𝑤))) = ((𝑣 ·P 𝑤) +P
(((𝑥
·P 𝑤) +P (𝑦
·P 𝑧)) +P (𝑣
·P 𝑢))) → ((𝑥 ·P 𝑧) +P
(𝑦
·P 𝑤)) = (((𝑥 ·P 𝑤) +P
(𝑦
·P 𝑧)) +P (𝑣
·P 𝑢)))) |
106 | 102, 105 | mpd 13 |
. . . . . . . . . . 11
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → ((𝑥 ·P 𝑧) +P
(𝑦
·P 𝑤)) = (((𝑥 ·P 𝑤) +P
(𝑦
·P 𝑧)) +P (𝑣
·P 𝑢))) |
107 | 44, 106 | breqtrrd 4017 |
. . . . . . . . . 10
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑣 ∈ P
∧ (𝑦
+P 𝑣) = 𝑥)) ∧ (𝑢 ∈ P ∧ (𝑤 +P
𝑢) = 𝑧)) → ((𝑥 ·P 𝑤) +P
(𝑦
·P 𝑧))<P ((𝑥
·P 𝑧) +P (𝑦
·P 𝑤))) |
108 | 107 | rexlimdvaa 2588 |
. . . . . . . . 9
⊢ ((((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P)) ∧ (𝑣 ∈ P ∧ (𝑦 +P
𝑣) = 𝑥)) → (∃𝑢 ∈ P (𝑤 +P 𝑢) = 𝑧 → ((𝑥 ·P 𝑤) +P
(𝑦
·P 𝑧))<P ((𝑥
·P 𝑧) +P (𝑦
·P 𝑤)))) |
109 | 22, 108 | syl5 32 |
. . . . . . . 8
⊢ ((((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P)) ∧ (𝑣 ∈ P ∧ (𝑦 +P
𝑣) = 𝑥)) → (𝑤<P 𝑧 → ((𝑥 ·P 𝑤) +P
(𝑦
·P 𝑧))<P ((𝑥
·P 𝑧) +P (𝑦
·P 𝑤)))) |
110 | 109 | rexlimdvaa 2588 |
. . . . . . 7
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P)) → (∃𝑣 ∈ P (𝑦 +P 𝑣) = 𝑥 → (𝑤<P 𝑧 → ((𝑥 ·P 𝑤) +P
(𝑦
·P 𝑧))<P ((𝑥
·P 𝑧) +P (𝑦
·P 𝑤))))) |
111 | 21, 110 | syl5 32 |
. . . . . 6
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P)) → (𝑦<P 𝑥 → (𝑤<P 𝑧 → ((𝑥 ·P 𝑤) +P
(𝑦
·P 𝑧))<P ((𝑥
·P 𝑧) +P (𝑦
·P 𝑤))))) |
112 | 111 | impd 252 |
. . . . 5
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P)) → ((𝑦<P 𝑥 ∧ 𝑤<P 𝑧) → ((𝑥 ·P 𝑤) +P
(𝑦
·P 𝑧))<P ((𝑥
·P 𝑧) +P (𝑦
·P 𝑤)))) |
113 | | mulsrpr 7708 |
. . . . . . 7
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P)) → ([〈𝑥, 𝑦〉] ~R
·R [〈𝑧, 𝑤〉] ~R ) =
[〈((𝑥
·P 𝑧) +P (𝑦
·P 𝑤)), ((𝑥 ·P 𝑤) +P
(𝑦
·P 𝑧))〉] ~R
) |
114 | 113 | breq2d 4001 |
. . . . . 6
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P)) → (0R
<R ([〈𝑥, 𝑦〉] ~R
·R [〈𝑧, 𝑤〉] ~R ) ↔
0R <R [〈((𝑥
·P 𝑧) +P (𝑦
·P 𝑤)), ((𝑥 ·P 𝑤) +P
(𝑦
·P 𝑧))〉] ~R
)) |
115 | | gt0srpr 7710 |
. . . . . 6
⊢
(0R <R
[〈((𝑥
·P 𝑧) +P (𝑦
·P 𝑤)), ((𝑥 ·P 𝑤) +P
(𝑦
·P 𝑧))〉] ~R ↔
((𝑥
·P 𝑤) +P (𝑦
·P 𝑧))<P ((𝑥
·P 𝑧) +P (𝑦
·P 𝑤))) |
116 | 114, 115 | bitrdi 195 |
. . . . 5
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P)) → (0R
<R ([〈𝑥, 𝑦〉] ~R
·R [〈𝑧, 𝑤〉] ~R ) ↔
((𝑥
·P 𝑤) +P (𝑦
·P 𝑧))<P ((𝑥
·P 𝑧) +P (𝑦
·P 𝑤)))) |
117 | 112, 116 | sylibrd 168 |
. . . 4
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P)) → ((𝑦<P 𝑥 ∧ 𝑤<P 𝑧) →
0R <R ([〈𝑥, 𝑦〉] ~R
·R [〈𝑧, 𝑤〉] ~R
))) |
118 | 20, 117 | syl5bi 151 |
. . 3
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P)) → ((0R
<R [〈𝑥, 𝑦〉] ~R ∧
0R <R [〈𝑧, 𝑤〉] ~R ) →
0R <R ([〈𝑥, 𝑦〉] ~R
·R [〈𝑧, 𝑤〉] ~R
))) |
119 | 7, 12, 17, 118 | 2ecoptocl 6601 |
. 2
⊢ ((𝐴 ∈ R ∧
𝐵 ∈ R)
→ ((0R <R 𝐴 ∧
0R <R 𝐵) → 0R
<R (𝐴 ·R 𝐵))) |
120 | 6, 119 | mpcom 36 |
1
⊢
((0R <R 𝐴 ∧
0R <R 𝐵) → 0R
<R (𝐴 ·R 𝐵)) |