ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcmpblnq0 GIF version

Theorem addcmpblnq0 7433
Description: Lemma showing compatibility of addition on nonnegative fractions. (Contributed by Jim Kingdon, 23-Nov-2019.)
Assertion
Ref Expression
addcmpblnq0 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → (((𝐴 ·o 𝐷) = (𝐵 ·o 𝐶) ∧ (𝐹 ·o 𝑆) = (𝐺 ·o 𝑅)) → ⟨((𝐴 ·o 𝐺) +o (𝐵 ·o 𝐹)), (𝐵 ·o 𝐺)⟩ ~Q0 ⟨((𝐶 ·o 𝑆) +o (𝐷 ·o 𝑅)), (𝐷 ·o 𝑆)⟩))

Proof of Theorem addcmpblnq0
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nndi 6481 . . . . . . . 8 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑥 ·o (𝑦 +o 𝑧)) = ((𝑥 ·o 𝑦) +o (𝑥 ·o 𝑧)))
21adantl 277 . . . . . . 7 (((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (𝑥 ·o (𝑦 +o 𝑧)) = ((𝑥 ·o 𝑦) +o (𝑥 ·o 𝑧)))
3 simplll 533 . . . . . . . 8 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → 𝐴 ∈ ω)
4 simprlr 538 . . . . . . . . 9 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → 𝐺N)
5 pinn 7299 . . . . . . . . 9 (𝐺N𝐺 ∈ ω)
64, 5syl 14 . . . . . . . 8 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → 𝐺 ∈ ω)
7 nnmcl 6476 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐺 ∈ ω) → (𝐴 ·o 𝐺) ∈ ω)
83, 6, 7syl2anc 411 . . . . . . 7 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → (𝐴 ·o 𝐺) ∈ ω)
9 simpllr 534 . . . . . . . . 9 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → 𝐵N)
10 pinn 7299 . . . . . . . . 9 (𝐵N𝐵 ∈ ω)
119, 10syl 14 . . . . . . . 8 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → 𝐵 ∈ ω)
12 simprll 537 . . . . . . . 8 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → 𝐹 ∈ ω)
13 nnmcl 6476 . . . . . . . 8 ((𝐵 ∈ ω ∧ 𝐹 ∈ ω) → (𝐵 ·o 𝐹) ∈ ω)
1411, 12, 13syl2anc 411 . . . . . . 7 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → (𝐵 ·o 𝐹) ∈ ω)
15 simplrr 536 . . . . . . . . 9 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → 𝐷N)
16 pinn 7299 . . . . . . . . 9 (𝐷N𝐷 ∈ ω)
1715, 16syl 14 . . . . . . . 8 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → 𝐷 ∈ ω)
18 simprrr 540 . . . . . . . . 9 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → 𝑆N)
19 pinn 7299 . . . . . . . . 9 (𝑆N𝑆 ∈ ω)
2018, 19syl 14 . . . . . . . 8 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → 𝑆 ∈ ω)
21 nnmcl 6476 . . . . . . . 8 ((𝐷 ∈ ω ∧ 𝑆 ∈ ω) → (𝐷 ·o 𝑆) ∈ ω)
2217, 20, 21syl2anc 411 . . . . . . 7 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → (𝐷 ·o 𝑆) ∈ ω)
23 nnacl 6475 . . . . . . . 8 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥 +o 𝑦) ∈ ω)
2423adantl 277 . . . . . . 7 (((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑥 +o 𝑦) ∈ ω)
25 nnmcom 6484 . . . . . . . 8 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥 ·o 𝑦) = (𝑦 ·o 𝑥))
2625adantl 277 . . . . . . 7 (((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑥 ·o 𝑦) = (𝑦 ·o 𝑥))
272, 8, 14, 22, 24, 26caovdir2d 6045 . . . . . 6 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → (((𝐴 ·o 𝐺) +o (𝐵 ·o 𝐹)) ·o (𝐷 ·o 𝑆)) = (((𝐴 ·o 𝐺) ·o (𝐷 ·o 𝑆)) +o ((𝐵 ·o 𝐹) ·o (𝐷 ·o 𝑆))))
28 nnmass 6482 . . . . . . . . 9 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝑥 ·o 𝑦) ·o 𝑧) = (𝑥 ·o (𝑦 ·o 𝑧)))
2928adantl 277 . . . . . . . 8 (((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → ((𝑥 ·o 𝑦) ·o 𝑧) = (𝑥 ·o (𝑦 ·o 𝑧)))
30 nnmcl 6476 . . . . . . . . 9 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥 ·o 𝑦) ∈ ω)
3130adantl 277 . . . . . . . 8 (((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑥 ·o 𝑦) ∈ ω)
323, 6, 17, 26, 29, 20, 31caov4d 6053 . . . . . . 7 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → ((𝐴 ·o 𝐺) ·o (𝐷 ·o 𝑆)) = ((𝐴 ·o 𝐷) ·o (𝐺 ·o 𝑆)))
3311, 12, 17, 26, 29, 20, 31caov4d 6053 . . . . . . 7 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → ((𝐵 ·o 𝐹) ·o (𝐷 ·o 𝑆)) = ((𝐵 ·o 𝐷) ·o (𝐹 ·o 𝑆)))
3432, 33oveq12d 5887 . . . . . 6 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → (((𝐴 ·o 𝐺) ·o (𝐷 ·o 𝑆)) +o ((𝐵 ·o 𝐹) ·o (𝐷 ·o 𝑆))) = (((𝐴 ·o 𝐷) ·o (𝐺 ·o 𝑆)) +o ((𝐵 ·o 𝐷) ·o (𝐹 ·o 𝑆))))
3527, 34eqtrd 2210 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → (((𝐴 ·o 𝐺) +o (𝐵 ·o 𝐹)) ·o (𝐷 ·o 𝑆)) = (((𝐴 ·o 𝐷) ·o (𝐺 ·o 𝑆)) +o ((𝐵 ·o 𝐷) ·o (𝐹 ·o 𝑆))))
36 oveq1 5876 . . . . . 6 ((𝐴 ·o 𝐷) = (𝐵 ·o 𝐶) → ((𝐴 ·o 𝐷) ·o (𝐺 ·o 𝑆)) = ((𝐵 ·o 𝐶) ·o (𝐺 ·o 𝑆)))
37 oveq2 5877 . . . . . 6 ((𝐹 ·o 𝑆) = (𝐺 ·o 𝑅) → ((𝐵 ·o 𝐷) ·o (𝐹 ·o 𝑆)) = ((𝐵 ·o 𝐷) ·o (𝐺 ·o 𝑅)))
3836, 37oveqan12d 5888 . . . . 5 (((𝐴 ·o 𝐷) = (𝐵 ·o 𝐶) ∧ (𝐹 ·o 𝑆) = (𝐺 ·o 𝑅)) → (((𝐴 ·o 𝐷) ·o (𝐺 ·o 𝑆)) +o ((𝐵 ·o 𝐷) ·o (𝐹 ·o 𝑆))) = (((𝐵 ·o 𝐶) ·o (𝐺 ·o 𝑆)) +o ((𝐵 ·o 𝐷) ·o (𝐺 ·o 𝑅))))
3935, 38sylan9eq 2230 . . . 4 (((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) ∧ ((𝐴 ·o 𝐷) = (𝐵 ·o 𝐶) ∧ (𝐹 ·o 𝑆) = (𝐺 ·o 𝑅))) → (((𝐴 ·o 𝐺) +o (𝐵 ·o 𝐹)) ·o (𝐷 ·o 𝑆)) = (((𝐵 ·o 𝐶) ·o (𝐺 ·o 𝑆)) +o ((𝐵 ·o 𝐷) ·o (𝐺 ·o 𝑅))))
40 nnmcl 6476 . . . . . . . 8 ((𝐵 ∈ ω ∧ 𝐺 ∈ ω) → (𝐵 ·o 𝐺) ∈ ω)
4111, 6, 40syl2anc 411 . . . . . . 7 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → (𝐵 ·o 𝐺) ∈ ω)
42 simplrl 535 . . . . . . . 8 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → 𝐶 ∈ ω)
43 nnmcl 6476 . . . . . . . 8 ((𝐶 ∈ ω ∧ 𝑆 ∈ ω) → (𝐶 ·o 𝑆) ∈ ω)
4442, 20, 43syl2anc 411 . . . . . . 7 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → (𝐶 ·o 𝑆) ∈ ω)
45 simprrl 539 . . . . . . . 8 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → 𝑅 ∈ ω)
46 nnmcl 6476 . . . . . . . 8 ((𝐷 ∈ ω ∧ 𝑅 ∈ ω) → (𝐷 ·o 𝑅) ∈ ω)
4717, 45, 46syl2anc 411 . . . . . . 7 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → (𝐷 ·o 𝑅) ∈ ω)
48 nndi 6481 . . . . . . 7 (((𝐵 ·o 𝐺) ∈ ω ∧ (𝐶 ·o 𝑆) ∈ ω ∧ (𝐷 ·o 𝑅) ∈ ω) → ((𝐵 ·o 𝐺) ·o ((𝐶 ·o 𝑆) +o (𝐷 ·o 𝑅))) = (((𝐵 ·o 𝐺) ·o (𝐶 ·o 𝑆)) +o ((𝐵 ·o 𝐺) ·o (𝐷 ·o 𝑅))))
4941, 44, 47, 48syl3anc 1238 . . . . . 6 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → ((𝐵 ·o 𝐺) ·o ((𝐶 ·o 𝑆) +o (𝐷 ·o 𝑅))) = (((𝐵 ·o 𝐺) ·o (𝐶 ·o 𝑆)) +o ((𝐵 ·o 𝐺) ·o (𝐷 ·o 𝑅))))
5011, 6, 42, 26, 29, 20, 31caov4d 6053 . . . . . . 7 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → ((𝐵 ·o 𝐺) ·o (𝐶 ·o 𝑆)) = ((𝐵 ·o 𝐶) ·o (𝐺 ·o 𝑆)))
5111, 6, 17, 26, 29, 45, 31caov4d 6053 . . . . . . 7 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → ((𝐵 ·o 𝐺) ·o (𝐷 ·o 𝑅)) = ((𝐵 ·o 𝐷) ·o (𝐺 ·o 𝑅)))
5250, 51oveq12d 5887 . . . . . 6 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → (((𝐵 ·o 𝐺) ·o (𝐶 ·o 𝑆)) +o ((𝐵 ·o 𝐺) ·o (𝐷 ·o 𝑅))) = (((𝐵 ·o 𝐶) ·o (𝐺 ·o 𝑆)) +o ((𝐵 ·o 𝐷) ·o (𝐺 ·o 𝑅))))
5349, 52eqtrd 2210 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → ((𝐵 ·o 𝐺) ·o ((𝐶 ·o 𝑆) +o (𝐷 ·o 𝑅))) = (((𝐵 ·o 𝐶) ·o (𝐺 ·o 𝑆)) +o ((𝐵 ·o 𝐷) ·o (𝐺 ·o 𝑅))))
5453adantr 276 . . . 4 (((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) ∧ ((𝐴 ·o 𝐷) = (𝐵 ·o 𝐶) ∧ (𝐹 ·o 𝑆) = (𝐺 ·o 𝑅))) → ((𝐵 ·o 𝐺) ·o ((𝐶 ·o 𝑆) +o (𝐷 ·o 𝑅))) = (((𝐵 ·o 𝐶) ·o (𝐺 ·o 𝑆)) +o ((𝐵 ·o 𝐷) ·o (𝐺 ·o 𝑅))))
5539, 54eqtr4d 2213 . . 3 (((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) ∧ ((𝐴 ·o 𝐷) = (𝐵 ·o 𝐶) ∧ (𝐹 ·o 𝑆) = (𝐺 ·o 𝑅))) → (((𝐴 ·o 𝐺) +o (𝐵 ·o 𝐹)) ·o (𝐷 ·o 𝑆)) = ((𝐵 ·o 𝐺) ·o ((𝐶 ·o 𝑆) +o (𝐷 ·o 𝑅))))
56 nnacl 6475 . . . . . 6 (((𝐴 ·o 𝐺) ∈ ω ∧ (𝐵 ·o 𝐹) ∈ ω) → ((𝐴 ·o 𝐺) +o (𝐵 ·o 𝐹)) ∈ ω)
578, 14, 56syl2anc 411 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → ((𝐴 ·o 𝐺) +o (𝐵 ·o 𝐹)) ∈ ω)
58 mulpiord 7307 . . . . . . . 8 ((𝐵N𝐺N) → (𝐵 ·N 𝐺) = (𝐵 ·o 𝐺))
59 mulclpi 7318 . . . . . . . 8 ((𝐵N𝐺N) → (𝐵 ·N 𝐺) ∈ N)
6058, 59eqeltrrd 2255 . . . . . . 7 ((𝐵N𝐺N) → (𝐵 ·o 𝐺) ∈ N)
6160ad2ant2l 508 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐹 ∈ ω ∧ 𝐺N)) → (𝐵 ·o 𝐺) ∈ N)
6261ad2ant2r 509 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → (𝐵 ·o 𝐺) ∈ N)
63 nnacl 6475 . . . . . 6 (((𝐶 ·o 𝑆) ∈ ω ∧ (𝐷 ·o 𝑅) ∈ ω) → ((𝐶 ·o 𝑆) +o (𝐷 ·o 𝑅)) ∈ ω)
6444, 47, 63syl2anc 411 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → ((𝐶 ·o 𝑆) +o (𝐷 ·o 𝑅)) ∈ ω)
65 mulpiord 7307 . . . . . . . 8 ((𝐷N𝑆N) → (𝐷 ·N 𝑆) = (𝐷 ·o 𝑆))
66 mulclpi 7318 . . . . . . . 8 ((𝐷N𝑆N) → (𝐷 ·N 𝑆) ∈ N)
6765, 66eqeltrrd 2255 . . . . . . 7 ((𝐷N𝑆N) → (𝐷 ·o 𝑆) ∈ N)
6867ad2ant2l 508 . . . . . 6 (((𝐶 ∈ ω ∧ 𝐷N) ∧ (𝑅 ∈ ω ∧ 𝑆N)) → (𝐷 ·o 𝑆) ∈ N)
6968ad2ant2l 508 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → (𝐷 ·o 𝑆) ∈ N)
70 enq0breq 7426 . . . . 5 (((((𝐴 ·o 𝐺) +o (𝐵 ·o 𝐹)) ∈ ω ∧ (𝐵 ·o 𝐺) ∈ N) ∧ (((𝐶 ·o 𝑆) +o (𝐷 ·o 𝑅)) ∈ ω ∧ (𝐷 ·o 𝑆) ∈ N)) → (⟨((𝐴 ·o 𝐺) +o (𝐵 ·o 𝐹)), (𝐵 ·o 𝐺)⟩ ~Q0 ⟨((𝐶 ·o 𝑆) +o (𝐷 ·o 𝑅)), (𝐷 ·o 𝑆)⟩ ↔ (((𝐴 ·o 𝐺) +o (𝐵 ·o 𝐹)) ·o (𝐷 ·o 𝑆)) = ((𝐵 ·o 𝐺) ·o ((𝐶 ·o 𝑆) +o (𝐷 ·o 𝑅)))))
7157, 62, 64, 69, 70syl22anc 1239 . . . 4 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → (⟨((𝐴 ·o 𝐺) +o (𝐵 ·o 𝐹)), (𝐵 ·o 𝐺)⟩ ~Q0 ⟨((𝐶 ·o 𝑆) +o (𝐷 ·o 𝑅)), (𝐷 ·o 𝑆)⟩ ↔ (((𝐴 ·o 𝐺) +o (𝐵 ·o 𝐹)) ·o (𝐷 ·o 𝑆)) = ((𝐵 ·o 𝐺) ·o ((𝐶 ·o 𝑆) +o (𝐷 ·o 𝑅)))))
7271adantr 276 . . 3 (((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) ∧ ((𝐴 ·o 𝐷) = (𝐵 ·o 𝐶) ∧ (𝐹 ·o 𝑆) = (𝐺 ·o 𝑅))) → (⟨((𝐴 ·o 𝐺) +o (𝐵 ·o 𝐹)), (𝐵 ·o 𝐺)⟩ ~Q0 ⟨((𝐶 ·o 𝑆) +o (𝐷 ·o 𝑅)), (𝐷 ·o 𝑆)⟩ ↔ (((𝐴 ·o 𝐺) +o (𝐵 ·o 𝐹)) ·o (𝐷 ·o 𝑆)) = ((𝐵 ·o 𝐺) ·o ((𝐶 ·o 𝑆) +o (𝐷 ·o 𝑅)))))
7355, 72mpbird 167 . 2 (((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) ∧ ((𝐴 ·o 𝐷) = (𝐵 ·o 𝐶) ∧ (𝐹 ·o 𝑆) = (𝐺 ·o 𝑅))) → ⟨((𝐴 ·o 𝐺) +o (𝐵 ·o 𝐹)), (𝐵 ·o 𝐺)⟩ ~Q0 ⟨((𝐶 ·o 𝑆) +o (𝐷 ·o 𝑅)), (𝐷 ·o 𝑆)⟩)
7473ex 115 1 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → (((𝐴 ·o 𝐷) = (𝐵 ·o 𝐶) ∧ (𝐹 ·o 𝑆) = (𝐺 ·o 𝑅)) → ⟨((𝐴 ·o 𝐺) +o (𝐵 ·o 𝐹)), (𝐵 ·o 𝐺)⟩ ~Q0 ⟨((𝐶 ·o 𝑆) +o (𝐷 ·o 𝑅)), (𝐷 ·o 𝑆)⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978   = wceq 1353  wcel 2148  cop 3594   class class class wbr 4000  ωcom 4586  (class class class)co 5869   +o coa 6408   ·o comu 6409  Ncnpi 7262   ·N cmi 7264   ~Q0 ceq0 7276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-iord 4363  df-on 4365  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-oadd 6415  df-omul 6416  df-ni 7294  df-mi 7296  df-enq0 7414
This theorem is referenced by:  addnq0mo  7437
  Copyright terms: Public domain W3C validator