ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulasssrg GIF version

Theorem mulasssrg 7454
Description: Multiplication of signed reals is associative. (Contributed by Jim Kingdon, 3-Jan-2020.)
Assertion
Ref Expression
mulasssrg ((𝐴R𝐵R𝐶R) → ((𝐴 ·R 𝐵) ·R 𝐶) = (𝐴 ·R (𝐵 ·R 𝐶)))

Proof of Theorem mulasssrg
Dummy variables 𝑓 𝑔 𝑟 𝑠 𝑡 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7423 . 2 R = ((P × P) / ~R )
2 mulsrpr 7442 . 2 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R ) = [⟨((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))⟩] ~R )
3 mulsrpr 7442 . 2 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑣, 𝑢⟩] ~R ) = [⟨((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)), ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣))⟩] ~R )
4 mulsrpr 7442 . 2 (((((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P ∧ ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P) ∧ (𝑣P𝑢P)) → ([⟨((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))⟩] ~R ·R [⟨𝑣, 𝑢⟩] ~R ) = [⟨((((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ·P 𝑣) +P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ·P 𝑢)), ((((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ·P 𝑢) +P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ·P 𝑣))⟩] ~R )
5 mulsrpr 7442 . 2 (((𝑥P𝑦P) ∧ (((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)) ∈ P ∧ ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)) ∈ P)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)), ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣))⟩] ~R ) = [⟨((𝑥 ·P ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢))) +P (𝑦 ·P ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)))), ((𝑥 ·P ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣))) +P (𝑦 ·P ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢))))⟩] ~R )
6 mulclpr 7281 . . . . 5 ((𝑥P𝑧P) → (𝑥 ·P 𝑧) ∈ P)
76ad2ant2r 496 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑥 ·P 𝑧) ∈ P)
8 mulclpr 7281 . . . . 5 ((𝑦P𝑤P) → (𝑦 ·P 𝑤) ∈ P)
98ad2ant2l 495 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑦 ·P 𝑤) ∈ P)
10 addclpr 7246 . . . 4 (((𝑥 ·P 𝑧) ∈ P ∧ (𝑦 ·P 𝑤) ∈ P) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P)
117, 9, 10syl2anc 406 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P)
12 mulclpr 7281 . . . . 5 ((𝑥P𝑤P) → (𝑥 ·P 𝑤) ∈ P)
1312ad2ant2rl 498 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑥 ·P 𝑤) ∈ P)
14 mulclpr 7281 . . . . 5 ((𝑦P𝑧P) → (𝑦 ·P 𝑧) ∈ P)
1514ad2ant2lr 497 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑦 ·P 𝑧) ∈ P)
16 addclpr 7246 . . . 4 (((𝑥 ·P 𝑤) ∈ P ∧ (𝑦 ·P 𝑧) ∈ P) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P)
1713, 15, 16syl2anc 406 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P)
1811, 17jca 302 . 2 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P ∧ ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P))
19 mulclpr 7281 . . . . 5 ((𝑧P𝑣P) → (𝑧 ·P 𝑣) ∈ P)
2019ad2ant2r 496 . . . 4 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑧 ·P 𝑣) ∈ P)
21 mulclpr 7281 . . . . 5 ((𝑤P𝑢P) → (𝑤 ·P 𝑢) ∈ P)
2221ad2ant2l 495 . . . 4 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑤 ·P 𝑢) ∈ P)
23 addclpr 7246 . . . 4 (((𝑧 ·P 𝑣) ∈ P ∧ (𝑤 ·P 𝑢) ∈ P) → ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)) ∈ P)
2420, 22, 23syl2anc 406 . . 3 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)) ∈ P)
25 mulclpr 7281 . . . . 5 ((𝑧P𝑢P) → (𝑧 ·P 𝑢) ∈ P)
2625ad2ant2rl 498 . . . 4 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑧 ·P 𝑢) ∈ P)
27 mulclpr 7281 . . . . 5 ((𝑤P𝑣P) → (𝑤 ·P 𝑣) ∈ P)
2827ad2ant2lr 497 . . . 4 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑤 ·P 𝑣) ∈ P)
29 addclpr 7246 . . . 4 (((𝑧 ·P 𝑢) ∈ P ∧ (𝑤 ·P 𝑣) ∈ P) → ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)) ∈ P)
3026, 28, 29syl2anc 406 . . 3 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)) ∈ P)
3124, 30jca 302 . 2 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)) ∈ P ∧ ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)) ∈ P))
32 mulcomprg 7289 . . . 4 ((𝑓P𝑔P) → (𝑓 ·P 𝑔) = (𝑔 ·P 𝑓))
3332adantl 273 . . 3 ((((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) ∧ (𝑓P𝑔P)) → (𝑓 ·P 𝑔) = (𝑔 ·P 𝑓))
34 distrprg 7297 . . . . . 6 ((𝑟P𝑠P𝑡P) → (𝑟 ·P (𝑠 +P 𝑡)) = ((𝑟 ·P 𝑠) +P (𝑟 ·P 𝑡)))
3534adantl 273 . . . . 5 (((𝑓P𝑔PP) ∧ (𝑟P𝑠P𝑡P)) → (𝑟 ·P (𝑠 +P 𝑡)) = ((𝑟 ·P 𝑠) +P (𝑟 ·P 𝑡)))
36 simp1 949 . . . . 5 ((𝑓P𝑔PP) → 𝑓P)
37 simp2 950 . . . . 5 ((𝑓P𝑔PP) → 𝑔P)
38 simp3 951 . . . . 5 ((𝑓P𝑔PP) → P)
39 addclpr 7246 . . . . . 6 ((𝑟P𝑠P) → (𝑟 +P 𝑠) ∈ P)
4039adantl 273 . . . . 5 (((𝑓P𝑔PP) ∧ (𝑟P𝑠P)) → (𝑟 +P 𝑠) ∈ P)
41 mulcomprg 7289 . . . . . 6 ((𝑟P𝑠P) → (𝑟 ·P 𝑠) = (𝑠 ·P 𝑟))
4241adantl 273 . . . . 5 (((𝑓P𝑔PP) ∧ (𝑟P𝑠P)) → (𝑟 ·P 𝑠) = (𝑠 ·P 𝑟))
4335, 36, 37, 38, 40, 42caovdir2d 5879 . . . 4 ((𝑓P𝑔PP) → ((𝑓 +P 𝑔) ·P ) = ((𝑓 ·P ) +P (𝑔 ·P )))
4443adantl 273 . . 3 ((((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) ∧ (𝑓P𝑔PP)) → ((𝑓 +P 𝑔) ·P ) = ((𝑓 ·P ) +P (𝑔 ·P )))
45 mulassprg 7290 . . . 4 ((𝑓P𝑔PP) → ((𝑓 ·P 𝑔) ·P ) = (𝑓 ·P (𝑔 ·P )))
4645adantl 273 . . 3 ((((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) ∧ (𝑓P𝑔PP)) → ((𝑓 ·P 𝑔) ·P ) = (𝑓 ·P (𝑔 ·P )))
47 mulclpr 7281 . . . 4 ((𝑓P𝑔P) → (𝑓 ·P 𝑔) ∈ P)
4847adantl 273 . . 3 ((((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) ∧ (𝑓P𝑔P)) → (𝑓 ·P 𝑔) ∈ P)
49 simp1l 973 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → 𝑥P)
50 simp1r 974 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → 𝑦P)
51 simp2l 975 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → 𝑧P)
52 simp2r 976 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → 𝑤P)
53 simp3l 977 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → 𝑣P)
54 simp3r 978 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → 𝑢P)
55 addcomprg 7287 . . . 4 ((𝑓P𝑔P) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
5655adantl 273 . . 3 ((((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) ∧ (𝑓P𝑔P)) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
57 addassprg 7288 . . . 4 ((𝑓P𝑔PP) → ((𝑓 +P 𝑔) +P ) = (𝑓 +P (𝑔 +P )))
5857adantl 273 . . 3 ((((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) ∧ (𝑓P𝑔PP)) → ((𝑓 +P 𝑔) +P ) = (𝑓 +P (𝑔 +P )))
59 addclpr 7246 . . . 4 ((𝑓P𝑔P) → (𝑓 +P 𝑔) ∈ P)
6059adantl 273 . . 3 ((((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) ∧ (𝑓P𝑔P)) → (𝑓 +P 𝑔) ∈ P)
6133, 44, 46, 48, 49, 50, 51, 52, 53, 54, 56, 58, 60caovlem2d 5895 . 2 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ((((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ·P 𝑣) +P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ·P 𝑢)) = ((𝑥 ·P ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢))) +P (𝑦 ·P ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)))))
6233, 44, 46, 48, 49, 50, 51, 52, 54, 53, 56, 58, 60caovlem2d 5895 . 2 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ((((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ·P 𝑢) +P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ·P 𝑣)) = ((𝑥 ·P ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣))) +P (𝑦 ·P ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)))))
631, 2, 3, 4, 5, 18, 31, 61, 62ecoviass 6469 1 ((𝐴R𝐵R𝐶R) → ((𝐴 ·R 𝐵) ·R 𝐶) = (𝐴 ·R (𝐵 ·R 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 930   = wceq 1299  wcel 1448  (class class class)co 5706  Pcnp 7000   +P cpp 7002   ·P cmp 7003   ~R cer 7005  Rcnr 7006   ·R cmr 7011
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-eprel 4149  df-id 4153  df-po 4156  df-iso 4157  df-iord 4226  df-on 4228  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-irdg 6197  df-1o 6243  df-2o 6244  df-oadd 6247  df-omul 6248  df-er 6359  df-ec 6361  df-qs 6365  df-ni 7013  df-pli 7014  df-mi 7015  df-lti 7016  df-plpq 7053  df-mpq 7054  df-enq 7056  df-nqqs 7057  df-plqqs 7058  df-mqqs 7059  df-1nqqs 7060  df-rq 7061  df-ltnqqs 7062  df-enq0 7133  df-nq0 7134  df-0nq0 7135  df-plq0 7136  df-mq0 7137  df-inp 7175  df-iplp 7177  df-imp 7178  df-enr 7422  df-nr 7423  df-mr 7425
This theorem is referenced by:  axmulass  7558
  Copyright terms: Public domain W3C validator