ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulasssrg GIF version

Theorem mulasssrg 7590
Description: Multiplication of signed reals is associative. (Contributed by Jim Kingdon, 3-Jan-2020.)
Assertion
Ref Expression
mulasssrg ((𝐴R𝐵R𝐶R) → ((𝐴 ·R 𝐵) ·R 𝐶) = (𝐴 ·R (𝐵 ·R 𝐶)))

Proof of Theorem mulasssrg
Dummy variables 𝑓 𝑔 𝑟 𝑠 𝑡 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7559 . 2 R = ((P × P) / ~R )
2 mulsrpr 7578 . 2 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R ) = [⟨((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))⟩] ~R )
3 mulsrpr 7578 . 2 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑣, 𝑢⟩] ~R ) = [⟨((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)), ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣))⟩] ~R )
4 mulsrpr 7578 . 2 (((((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P ∧ ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P) ∧ (𝑣P𝑢P)) → ([⟨((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))⟩] ~R ·R [⟨𝑣, 𝑢⟩] ~R ) = [⟨((((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ·P 𝑣) +P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ·P 𝑢)), ((((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ·P 𝑢) +P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ·P 𝑣))⟩] ~R )
5 mulsrpr 7578 . 2 (((𝑥P𝑦P) ∧ (((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)) ∈ P ∧ ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)) ∈ P)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)), ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣))⟩] ~R ) = [⟨((𝑥 ·P ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢))) +P (𝑦 ·P ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)))), ((𝑥 ·P ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣))) +P (𝑦 ·P ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢))))⟩] ~R )
6 mulclpr 7404 . . . . 5 ((𝑥P𝑧P) → (𝑥 ·P 𝑧) ∈ P)
76ad2ant2r 501 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑥 ·P 𝑧) ∈ P)
8 mulclpr 7404 . . . . 5 ((𝑦P𝑤P) → (𝑦 ·P 𝑤) ∈ P)
98ad2ant2l 500 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑦 ·P 𝑤) ∈ P)
10 addclpr 7369 . . . 4 (((𝑥 ·P 𝑧) ∈ P ∧ (𝑦 ·P 𝑤) ∈ P) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P)
117, 9, 10syl2anc 409 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P)
12 mulclpr 7404 . . . . 5 ((𝑥P𝑤P) → (𝑥 ·P 𝑤) ∈ P)
1312ad2ant2rl 503 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑥 ·P 𝑤) ∈ P)
14 mulclpr 7404 . . . . 5 ((𝑦P𝑧P) → (𝑦 ·P 𝑧) ∈ P)
1514ad2ant2lr 502 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑦 ·P 𝑧) ∈ P)
16 addclpr 7369 . . . 4 (((𝑥 ·P 𝑤) ∈ P ∧ (𝑦 ·P 𝑧) ∈ P) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P)
1713, 15, 16syl2anc 409 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P)
1811, 17jca 304 . 2 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P ∧ ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P))
19 mulclpr 7404 . . . . 5 ((𝑧P𝑣P) → (𝑧 ·P 𝑣) ∈ P)
2019ad2ant2r 501 . . . 4 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑧 ·P 𝑣) ∈ P)
21 mulclpr 7404 . . . . 5 ((𝑤P𝑢P) → (𝑤 ·P 𝑢) ∈ P)
2221ad2ant2l 500 . . . 4 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑤 ·P 𝑢) ∈ P)
23 addclpr 7369 . . . 4 (((𝑧 ·P 𝑣) ∈ P ∧ (𝑤 ·P 𝑢) ∈ P) → ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)) ∈ P)
2420, 22, 23syl2anc 409 . . 3 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)) ∈ P)
25 mulclpr 7404 . . . . 5 ((𝑧P𝑢P) → (𝑧 ·P 𝑢) ∈ P)
2625ad2ant2rl 503 . . . 4 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑧 ·P 𝑢) ∈ P)
27 mulclpr 7404 . . . . 5 ((𝑤P𝑣P) → (𝑤 ·P 𝑣) ∈ P)
2827ad2ant2lr 502 . . . 4 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑤 ·P 𝑣) ∈ P)
29 addclpr 7369 . . . 4 (((𝑧 ·P 𝑢) ∈ P ∧ (𝑤 ·P 𝑣) ∈ P) → ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)) ∈ P)
3026, 28, 29syl2anc 409 . . 3 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)) ∈ P)
3124, 30jca 304 . 2 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)) ∈ P ∧ ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)) ∈ P))
32 mulcomprg 7412 . . . 4 ((𝑓P𝑔P) → (𝑓 ·P 𝑔) = (𝑔 ·P 𝑓))
3332adantl 275 . . 3 ((((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) ∧ (𝑓P𝑔P)) → (𝑓 ·P 𝑔) = (𝑔 ·P 𝑓))
34 distrprg 7420 . . . . . 6 ((𝑟P𝑠P𝑡P) → (𝑟 ·P (𝑠 +P 𝑡)) = ((𝑟 ·P 𝑠) +P (𝑟 ·P 𝑡)))
3534adantl 275 . . . . 5 (((𝑓P𝑔PP) ∧ (𝑟P𝑠P𝑡P)) → (𝑟 ·P (𝑠 +P 𝑡)) = ((𝑟 ·P 𝑠) +P (𝑟 ·P 𝑡)))
36 simp1 982 . . . . 5 ((𝑓P𝑔PP) → 𝑓P)
37 simp2 983 . . . . 5 ((𝑓P𝑔PP) → 𝑔P)
38 simp3 984 . . . . 5 ((𝑓P𝑔PP) → P)
39 addclpr 7369 . . . . . 6 ((𝑟P𝑠P) → (𝑟 +P 𝑠) ∈ P)
4039adantl 275 . . . . 5 (((𝑓P𝑔PP) ∧ (𝑟P𝑠P)) → (𝑟 +P 𝑠) ∈ P)
41 mulcomprg 7412 . . . . . 6 ((𝑟P𝑠P) → (𝑟 ·P 𝑠) = (𝑠 ·P 𝑟))
4241adantl 275 . . . . 5 (((𝑓P𝑔PP) ∧ (𝑟P𝑠P)) → (𝑟 ·P 𝑠) = (𝑠 ·P 𝑟))
4335, 36, 37, 38, 40, 42caovdir2d 5955 . . . 4 ((𝑓P𝑔PP) → ((𝑓 +P 𝑔) ·P ) = ((𝑓 ·P ) +P (𝑔 ·P )))
4443adantl 275 . . 3 ((((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) ∧ (𝑓P𝑔PP)) → ((𝑓 +P 𝑔) ·P ) = ((𝑓 ·P ) +P (𝑔 ·P )))
45 mulassprg 7413 . . . 4 ((𝑓P𝑔PP) → ((𝑓 ·P 𝑔) ·P ) = (𝑓 ·P (𝑔 ·P )))
4645adantl 275 . . 3 ((((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) ∧ (𝑓P𝑔PP)) → ((𝑓 ·P 𝑔) ·P ) = (𝑓 ·P (𝑔 ·P )))
47 mulclpr 7404 . . . 4 ((𝑓P𝑔P) → (𝑓 ·P 𝑔) ∈ P)
4847adantl 275 . . 3 ((((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) ∧ (𝑓P𝑔P)) → (𝑓 ·P 𝑔) ∈ P)
49 simp1l 1006 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → 𝑥P)
50 simp1r 1007 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → 𝑦P)
51 simp2l 1008 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → 𝑧P)
52 simp2r 1009 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → 𝑤P)
53 simp3l 1010 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → 𝑣P)
54 simp3r 1011 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → 𝑢P)
55 addcomprg 7410 . . . 4 ((𝑓P𝑔P) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
5655adantl 275 . . 3 ((((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) ∧ (𝑓P𝑔P)) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
57 addassprg 7411 . . . 4 ((𝑓P𝑔PP) → ((𝑓 +P 𝑔) +P ) = (𝑓 +P (𝑔 +P )))
5857adantl 275 . . 3 ((((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) ∧ (𝑓P𝑔PP)) → ((𝑓 +P 𝑔) +P ) = (𝑓 +P (𝑔 +P )))
59 addclpr 7369 . . . 4 ((𝑓P𝑔P) → (𝑓 +P 𝑔) ∈ P)
6059adantl 275 . . 3 ((((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) ∧ (𝑓P𝑔P)) → (𝑓 +P 𝑔) ∈ P)
6133, 44, 46, 48, 49, 50, 51, 52, 53, 54, 56, 58, 60caovlem2d 5971 . 2 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ((((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ·P 𝑣) +P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ·P 𝑢)) = ((𝑥 ·P ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢))) +P (𝑦 ·P ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)))))
6233, 44, 46, 48, 49, 50, 51, 52, 54, 53, 56, 58, 60caovlem2d 5971 . 2 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ((((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ·P 𝑢) +P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ·P 𝑣)) = ((𝑥 ·P ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣))) +P (𝑦 ·P ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)))))
631, 2, 3, 4, 5, 18, 31, 61, 62ecoviass 6547 1 ((𝐴R𝐵R𝐶R) → ((𝐴 ·R 𝐵) ·R 𝐶) = (𝐴 ·R (𝐵 ·R 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 963   = wceq 1332  wcel 1481  (class class class)co 5782  Pcnp 7123   +P cpp 7125   ·P cmp 7126   ~R cer 7128  Rcnr 7129   ·R cmr 7134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-1o 6321  df-2o 6322  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-pli 7137  df-mi 7138  df-lti 7139  df-plpq 7176  df-mpq 7177  df-enq 7179  df-nqqs 7180  df-plqqs 7181  df-mqqs 7182  df-1nqqs 7183  df-rq 7184  df-ltnqqs 7185  df-enq0 7256  df-nq0 7257  df-0nq0 7258  df-plq0 7259  df-mq0 7260  df-inp 7298  df-iplp 7300  df-imp 7301  df-enr 7558  df-nr 7559  df-mr 7561
This theorem is referenced by:  axmulass  7705
  Copyright terms: Public domain W3C validator