ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulasssrg GIF version

Theorem mulasssrg 7913
Description: Multiplication of signed reals is associative. (Contributed by Jim Kingdon, 3-Jan-2020.)
Assertion
Ref Expression
mulasssrg ((𝐴R𝐵R𝐶R) → ((𝐴 ·R 𝐵) ·R 𝐶) = (𝐴 ·R (𝐵 ·R 𝐶)))

Proof of Theorem mulasssrg
Dummy variables 𝑓 𝑔 𝑟 𝑠 𝑡 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7882 . 2 R = ((P × P) / ~R )
2 mulsrpr 7901 . 2 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R ) = [⟨((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))⟩] ~R )
3 mulsrpr 7901 . 2 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑣, 𝑢⟩] ~R ) = [⟨((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)), ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣))⟩] ~R )
4 mulsrpr 7901 . 2 (((((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P ∧ ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P) ∧ (𝑣P𝑢P)) → ([⟨((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))⟩] ~R ·R [⟨𝑣, 𝑢⟩] ~R ) = [⟨((((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ·P 𝑣) +P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ·P 𝑢)), ((((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ·P 𝑢) +P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ·P 𝑣))⟩] ~R )
5 mulsrpr 7901 . 2 (((𝑥P𝑦P) ∧ (((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)) ∈ P ∧ ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)) ∈ P)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)), ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣))⟩] ~R ) = [⟨((𝑥 ·P ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢))) +P (𝑦 ·P ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)))), ((𝑥 ·P ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣))) +P (𝑦 ·P ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢))))⟩] ~R )
6 mulclpr 7727 . . . . 5 ((𝑥P𝑧P) → (𝑥 ·P 𝑧) ∈ P)
76ad2ant2r 509 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑥 ·P 𝑧) ∈ P)
8 mulclpr 7727 . . . . 5 ((𝑦P𝑤P) → (𝑦 ·P 𝑤) ∈ P)
98ad2ant2l 508 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑦 ·P 𝑤) ∈ P)
10 addclpr 7692 . . . 4 (((𝑥 ·P 𝑧) ∈ P ∧ (𝑦 ·P 𝑤) ∈ P) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P)
117, 9, 10syl2anc 411 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P)
12 mulclpr 7727 . . . . 5 ((𝑥P𝑤P) → (𝑥 ·P 𝑤) ∈ P)
1312ad2ant2rl 511 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑥 ·P 𝑤) ∈ P)
14 mulclpr 7727 . . . . 5 ((𝑦P𝑧P) → (𝑦 ·P 𝑧) ∈ P)
1514ad2ant2lr 510 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑦 ·P 𝑧) ∈ P)
16 addclpr 7692 . . . 4 (((𝑥 ·P 𝑤) ∈ P ∧ (𝑦 ·P 𝑧) ∈ P) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P)
1713, 15, 16syl2anc 411 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P)
1811, 17jca 306 . 2 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P ∧ ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P))
19 mulclpr 7727 . . . . 5 ((𝑧P𝑣P) → (𝑧 ·P 𝑣) ∈ P)
2019ad2ant2r 509 . . . 4 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑧 ·P 𝑣) ∈ P)
21 mulclpr 7727 . . . . 5 ((𝑤P𝑢P) → (𝑤 ·P 𝑢) ∈ P)
2221ad2ant2l 508 . . . 4 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑤 ·P 𝑢) ∈ P)
23 addclpr 7692 . . . 4 (((𝑧 ·P 𝑣) ∈ P ∧ (𝑤 ·P 𝑢) ∈ P) → ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)) ∈ P)
2420, 22, 23syl2anc 411 . . 3 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)) ∈ P)
25 mulclpr 7727 . . . . 5 ((𝑧P𝑢P) → (𝑧 ·P 𝑢) ∈ P)
2625ad2ant2rl 511 . . . 4 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑧 ·P 𝑢) ∈ P)
27 mulclpr 7727 . . . . 5 ((𝑤P𝑣P) → (𝑤 ·P 𝑣) ∈ P)
2827ad2ant2lr 510 . . . 4 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑤 ·P 𝑣) ∈ P)
29 addclpr 7692 . . . 4 (((𝑧 ·P 𝑢) ∈ P ∧ (𝑤 ·P 𝑣) ∈ P) → ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)) ∈ P)
3026, 28, 29syl2anc 411 . . 3 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)) ∈ P)
3124, 30jca 306 . 2 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)) ∈ P ∧ ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)) ∈ P))
32 mulcomprg 7735 . . . 4 ((𝑓P𝑔P) → (𝑓 ·P 𝑔) = (𝑔 ·P 𝑓))
3332adantl 277 . . 3 ((((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) ∧ (𝑓P𝑔P)) → (𝑓 ·P 𝑔) = (𝑔 ·P 𝑓))
34 distrprg 7743 . . . . . 6 ((𝑟P𝑠P𝑡P) → (𝑟 ·P (𝑠 +P 𝑡)) = ((𝑟 ·P 𝑠) +P (𝑟 ·P 𝑡)))
3534adantl 277 . . . . 5 (((𝑓P𝑔PP) ∧ (𝑟P𝑠P𝑡P)) → (𝑟 ·P (𝑠 +P 𝑡)) = ((𝑟 ·P 𝑠) +P (𝑟 ·P 𝑡)))
36 simp1 1002 . . . . 5 ((𝑓P𝑔PP) → 𝑓P)
37 simp2 1003 . . . . 5 ((𝑓P𝑔PP) → 𝑔P)
38 simp3 1004 . . . . 5 ((𝑓P𝑔PP) → P)
39 addclpr 7692 . . . . . 6 ((𝑟P𝑠P) → (𝑟 +P 𝑠) ∈ P)
4039adantl 277 . . . . 5 (((𝑓P𝑔PP) ∧ (𝑟P𝑠P)) → (𝑟 +P 𝑠) ∈ P)
41 mulcomprg 7735 . . . . . 6 ((𝑟P𝑠P) → (𝑟 ·P 𝑠) = (𝑠 ·P 𝑟))
4241adantl 277 . . . . 5 (((𝑓P𝑔PP) ∧ (𝑟P𝑠P)) → (𝑟 ·P 𝑠) = (𝑠 ·P 𝑟))
4335, 36, 37, 38, 40, 42caovdir2d 6153 . . . 4 ((𝑓P𝑔PP) → ((𝑓 +P 𝑔) ·P ) = ((𝑓 ·P ) +P (𝑔 ·P )))
4443adantl 277 . . 3 ((((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) ∧ (𝑓P𝑔PP)) → ((𝑓 +P 𝑔) ·P ) = ((𝑓 ·P ) +P (𝑔 ·P )))
45 mulassprg 7736 . . . 4 ((𝑓P𝑔PP) → ((𝑓 ·P 𝑔) ·P ) = (𝑓 ·P (𝑔 ·P )))
4645adantl 277 . . 3 ((((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) ∧ (𝑓P𝑔PP)) → ((𝑓 ·P 𝑔) ·P ) = (𝑓 ·P (𝑔 ·P )))
47 mulclpr 7727 . . . 4 ((𝑓P𝑔P) → (𝑓 ·P 𝑔) ∈ P)
4847adantl 277 . . 3 ((((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) ∧ (𝑓P𝑔P)) → (𝑓 ·P 𝑔) ∈ P)
49 simp1l 1026 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → 𝑥P)
50 simp1r 1027 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → 𝑦P)
51 simp2l 1028 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → 𝑧P)
52 simp2r 1029 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → 𝑤P)
53 simp3l 1030 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → 𝑣P)
54 simp3r 1031 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → 𝑢P)
55 addcomprg 7733 . . . 4 ((𝑓P𝑔P) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
5655adantl 277 . . 3 ((((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) ∧ (𝑓P𝑔P)) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
57 addassprg 7734 . . . 4 ((𝑓P𝑔PP) → ((𝑓 +P 𝑔) +P ) = (𝑓 +P (𝑔 +P )))
5857adantl 277 . . 3 ((((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) ∧ (𝑓P𝑔PP)) → ((𝑓 +P 𝑔) +P ) = (𝑓 +P (𝑔 +P )))
59 addclpr 7692 . . . 4 ((𝑓P𝑔P) → (𝑓 +P 𝑔) ∈ P)
6059adantl 277 . . 3 ((((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) ∧ (𝑓P𝑔P)) → (𝑓 +P 𝑔) ∈ P)
6133, 44, 46, 48, 49, 50, 51, 52, 53, 54, 56, 58, 60caovlem2d 6169 . 2 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ((((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ·P 𝑣) +P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ·P 𝑢)) = ((𝑥 ·P ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢))) +P (𝑦 ·P ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)))))
6233, 44, 46, 48, 49, 50, 51, 52, 54, 53, 56, 58, 60caovlem2d 6169 . 2 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ((((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ·P 𝑢) +P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ·P 𝑣)) = ((𝑥 ·P ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣))) +P (𝑦 ·P ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)))))
631, 2, 3, 4, 5, 18, 31, 61, 62ecoviass 6762 1 ((𝐴R𝐵R𝐶R) → ((𝐴 ·R 𝐵) ·R 𝐶) = (𝐴 ·R (𝐵 ·R 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 983   = wceq 1375  wcel 2180  (class class class)co 5974  Pcnp 7446   +P cpp 7448   ·P cmp 7449   ~R cer 7451  Rcnr 7452   ·R cmr 7457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-eprel 4357  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-1o 6532  df-2o 6533  df-oadd 6536  df-omul 6537  df-er 6650  df-ec 6652  df-qs 6656  df-ni 7459  df-pli 7460  df-mi 7461  df-lti 7462  df-plpq 7499  df-mpq 7500  df-enq 7502  df-nqqs 7503  df-plqqs 7504  df-mqqs 7505  df-1nqqs 7506  df-rq 7507  df-ltnqqs 7508  df-enq0 7579  df-nq0 7580  df-0nq0 7581  df-plq0 7582  df-mq0 7583  df-inp 7621  df-iplp 7623  df-imp 7624  df-enr 7881  df-nr 7882  df-mr 7884
This theorem is referenced by:  axmulass  8028
  Copyright terms: Public domain W3C validator