![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > zring0 | GIF version |
Description: The zero element of the ring of integers. (Contributed by Thierry Arnoux, 1-Nov-2017.) (Revised by AV, 9-Jun-2019.) |
Ref | Expression |
---|---|
zring0 | ⊢ 0 = (0g‘ℤring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cncrng 14101 | . . 3 ⊢ ℂfld ∈ CRing | |
2 | crngring 13540 | . . 3 ⊢ (ℂfld ∈ CRing → ℂfld ∈ Ring) | |
3 | ringmnd 13538 | . . 3 ⊢ (ℂfld ∈ Ring → ℂfld ∈ Mnd) | |
4 | 1, 2, 3 | mp2b 8 | . 2 ⊢ ℂfld ∈ Mnd |
5 | 0z 9334 | . 2 ⊢ 0 ∈ ℤ | |
6 | zsscn 9331 | . 2 ⊢ ℤ ⊆ ℂ | |
7 | df-zring 14123 | . . 3 ⊢ ℤring = (ℂfld ↾s ℤ) | |
8 | cnfldbas 14092 | . . 3 ⊢ ℂ = (Base‘ℂfld) | |
9 | cnfld0 14103 | . . 3 ⊢ 0 = (0g‘ℂfld) | |
10 | 7, 8, 9 | ress0g 13060 | . 2 ⊢ ((ℂfld ∈ Mnd ∧ 0 ∈ ℤ ∧ ℤ ⊆ ℂ) → 0 = (0g‘ℤring)) |
11 | 4, 5, 6, 10 | mp3an 1348 | 1 ⊢ 0 = (0g‘ℤring) |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2167 ⊆ wss 3157 ‘cfv 5258 ℂcc 7875 0cc0 7877 ℤcz 9323 0gc0g 12903 Mndcmnd 13033 Ringcrg 13528 CRingccrg 13529 ℂfldccnfld 14088 ℤringczring 14122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7968 ax-resscn 7969 ax-1cn 7970 ax-1re 7971 ax-icn 7972 ax-addcl 7973 ax-addrcl 7974 ax-mulcl 7975 ax-mulrcl 7976 ax-addcom 7977 ax-mulcom 7978 ax-addass 7979 ax-mulass 7980 ax-distr 7981 ax-i2m1 7982 ax-0lt1 7983 ax-1rid 7984 ax-0id 7985 ax-rnegex 7986 ax-precex 7987 ax-cnre 7988 ax-pre-ltirr 7989 ax-pre-ltwlin 7990 ax-pre-lttrn 7991 ax-pre-apti 7992 ax-pre-ltadd 7993 ax-pre-mulgt0 7994 ax-addf 7999 ax-mulf 8000 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-tp 3630 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-pnf 8061 df-mnf 8062 df-xr 8063 df-ltxr 8064 df-le 8065 df-sub 8197 df-neg 8198 df-reap 8599 df-inn 8988 df-2 9046 df-3 9047 df-4 9048 df-5 9049 df-6 9050 df-7 9051 df-8 9052 df-9 9053 df-n0 9247 df-z 9324 df-dec 9455 df-uz 9599 df-rp 9726 df-fz 10081 df-cj 10992 df-abs 11149 df-struct 12656 df-ndx 12657 df-slot 12658 df-base 12660 df-sets 12661 df-iress 12662 df-plusg 12744 df-mulr 12745 df-starv 12746 df-tset 12750 df-ple 12751 df-ds 12753 df-unif 12754 df-0g 12905 df-topgen 12907 df-mgm 12975 df-sgrp 13021 df-mnd 13034 df-grp 13111 df-cmn 13392 df-mgp 13453 df-ring 13530 df-cring 13531 df-bl 14078 df-mopn 14079 df-fg 14081 df-metu 14082 df-cnfld 14089 df-zring 14123 |
This theorem is referenced by: zringnzr 14134 zringinvg 14136 zrh0 14157 zndvds0 14182 lgseisenlem4 15281 |
Copyright terms: Public domain | W3C validator |