ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zring0 GIF version

Theorem zring0 14132
Description: The zero element of the ring of integers. (Contributed by Thierry Arnoux, 1-Nov-2017.) (Revised by AV, 9-Jun-2019.)
Assertion
Ref Expression
zring0 0 = (0g‘ℤring)

Proof of Theorem zring0
StepHypRef Expression
1 cncrng 14101 . . 3 fld ∈ CRing
2 crngring 13540 . . 3 (ℂfld ∈ CRing → ℂfld ∈ Ring)
3 ringmnd 13538 . . 3 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
41, 2, 3mp2b 8 . 2 fld ∈ Mnd
5 0z 9334 . 2 0 ∈ ℤ
6 zsscn 9331 . 2 ℤ ⊆ ℂ
7 df-zring 14123 . . 3 ring = (ℂflds ℤ)
8 cnfldbas 14092 . . 3 ℂ = (Base‘ℂfld)
9 cnfld0 14103 . . 3 0 = (0g‘ℂfld)
107, 8, 9ress0g 13060 . 2 ((ℂfld ∈ Mnd ∧ 0 ∈ ℤ ∧ ℤ ⊆ ℂ) → 0 = (0g‘ℤring))
114, 5, 6, 10mp3an 1348 1 0 = (0g‘ℤring)
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2167  wss 3157  cfv 5258  cc 7875  0cc0 7877  cz 9323  0gc0g 12903  Mndcmnd 13033  Ringcrg 13528  CRingccrg 13529  fldccnfld 14088  ringczring 14122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7968  ax-resscn 7969  ax-1cn 7970  ax-1re 7971  ax-icn 7972  ax-addcl 7973  ax-addrcl 7974  ax-mulcl 7975  ax-mulrcl 7976  ax-addcom 7977  ax-mulcom 7978  ax-addass 7979  ax-mulass 7980  ax-distr 7981  ax-i2m1 7982  ax-0lt1 7983  ax-1rid 7984  ax-0id 7985  ax-rnegex 7986  ax-precex 7987  ax-cnre 7988  ax-pre-ltirr 7989  ax-pre-ltwlin 7990  ax-pre-lttrn 7991  ax-pre-apti 7992  ax-pre-ltadd 7993  ax-pre-mulgt0 7994  ax-addf 7999  ax-mulf 8000
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-tp 3630  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-pnf 8061  df-mnf 8062  df-xr 8063  df-ltxr 8064  df-le 8065  df-sub 8197  df-neg 8198  df-reap 8599  df-inn 8988  df-2 9046  df-3 9047  df-4 9048  df-5 9049  df-6 9050  df-7 9051  df-8 9052  df-9 9053  df-n0 9247  df-z 9324  df-dec 9455  df-uz 9599  df-rp 9726  df-fz 10081  df-cj 10992  df-abs 11149  df-struct 12656  df-ndx 12657  df-slot 12658  df-base 12660  df-sets 12661  df-iress 12662  df-plusg 12744  df-mulr 12745  df-starv 12746  df-tset 12750  df-ple 12751  df-ds 12753  df-unif 12754  df-0g 12905  df-topgen 12907  df-mgm 12975  df-sgrp 13021  df-mnd 13034  df-grp 13111  df-cmn 13392  df-mgp 13453  df-ring 13530  df-cring 13531  df-bl 14078  df-mopn 14079  df-fg 14081  df-metu 14082  df-cnfld 14089  df-zring 14123
This theorem is referenced by:  zringnzr  14134  zringinvg  14136  zrh0  14157  zndvds0  14182  lgseisenlem4  15281
  Copyright terms: Public domain W3C validator