ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsunit GIF version

Theorem dvdsunit 13234
Description: A divisor of a unit is a unit. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
dvdsunit.1 𝑈 = (Unit‘𝑅)
dvdsunit.3 = (∥r𝑅)
Assertion
Ref Expression
dvdsunit ((𝑅 ∈ CRing ∧ 𝑌 𝑋𝑋𝑈) → 𝑌𝑈)

Proof of Theorem dvdsunit
StepHypRef Expression
1 crngring 13144 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2 eqid 2177 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
3 dvdsunit.3 . . . . . 6 = (∥r𝑅)
42, 3dvdsrtr 13223 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑌 𝑋𝑋 (1r𝑅)) → 𝑌 (1r𝑅))
543expia 1205 . . . 4 ((𝑅 ∈ Ring ∧ 𝑌 𝑋) → (𝑋 (1r𝑅) → 𝑌 (1r𝑅)))
61, 5sylan 283 . . 3 ((𝑅 ∈ CRing ∧ 𝑌 𝑋) → (𝑋 (1r𝑅) → 𝑌 (1r𝑅)))
7 dvdsunit.1 . . . . 5 𝑈 = (Unit‘𝑅)
8 eqid 2177 . . . . 5 (1r𝑅) = (1r𝑅)
97, 8, 3crngunit 13233 . . . 4 (𝑅 ∈ CRing → (𝑋𝑈𝑋 (1r𝑅)))
109adantr 276 . . 3 ((𝑅 ∈ CRing ∧ 𝑌 𝑋) → (𝑋𝑈𝑋 (1r𝑅)))
117, 8, 3crngunit 13233 . . . 4 (𝑅 ∈ CRing → (𝑌𝑈𝑌 (1r𝑅)))
1211adantr 276 . . 3 ((𝑅 ∈ CRing ∧ 𝑌 𝑋) → (𝑌𝑈𝑌 (1r𝑅)))
136, 10, 123imtr4d 203 . 2 ((𝑅 ∈ CRing ∧ 𝑌 𝑋) → (𝑋𝑈𝑌𝑈))
14133impia 1200 1 ((𝑅 ∈ CRing ∧ 𝑌 𝑋𝑋𝑈) → 𝑌𝑈)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978   = wceq 1353  wcel 2148   class class class wbr 4003  cfv 5216  Basecbs 12456  1rcur 13095  Ringcrg 13132  CRingccrg 13133  rcdsr 13208  Unitcui 13209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-addcom 7910  ax-addass 7912  ax-i2m1 7915  ax-0lt1 7916  ax-0id 7918  ax-rnegex 7919  ax-pre-ltirr 7922  ax-pre-lttrn 7924  ax-pre-ltadd 7926
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-tpos 6245  df-pnf 7992  df-mnf 7993  df-ltxr 7995  df-inn 8918  df-2 8976  df-3 8977  df-ndx 12459  df-slot 12460  df-base 12462  df-sets 12463  df-plusg 12543  df-mulr 12544  df-0g 12697  df-mgm 12729  df-sgrp 12762  df-mnd 12772  df-grp 12834  df-minusg 12835  df-cmn 13043  df-abl 13044  df-mgp 13084  df-ur 13096  df-srg 13100  df-ring 13134  df-cring 13135  df-oppr 13193  df-dvdsr 13211  df-unit 13212
This theorem is referenced by:  unitmulclb  13236
  Copyright terms: Public domain W3C validator