![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > zringring | GIF version |
Description: The ring of integers is a ring. (Contributed by AV, 20-May-2019.) (Revised by AV, 9-Jun-2019.) (Proof shortened by AV, 13-Jun-2019.) |
Ref | Expression |
---|---|
zringring | ⊢ ℤring ∈ Ring |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zringcrng 13891 | . 2 ⊢ ℤring ∈ CRing | |
2 | crngring 13362 | . 2 ⊢ (ℤring ∈ CRing → ℤring ∈ Ring) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ℤring ∈ Ring |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2160 Ringcrg 13350 CRingccrg 13351 ℤringczring 13889 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-cnex 7932 ax-resscn 7933 ax-1cn 7934 ax-1re 7935 ax-icn 7936 ax-addcl 7937 ax-addrcl 7938 ax-mulcl 7939 ax-mulrcl 7940 ax-addcom 7941 ax-mulcom 7942 ax-addass 7943 ax-mulass 7944 ax-distr 7945 ax-i2m1 7946 ax-0lt1 7947 ax-1rid 7948 ax-0id 7949 ax-rnegex 7950 ax-precex 7951 ax-cnre 7952 ax-pre-ltirr 7953 ax-pre-ltwlin 7954 ax-pre-lttrn 7955 ax-pre-apti 7956 ax-pre-ltadd 7957 ax-pre-mulgt0 7958 ax-addf 7963 ax-mulf 7964 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-tp 3615 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-riota 5852 df-ov 5899 df-oprab 5900 df-mpo 5901 df-pnf 8024 df-mnf 8025 df-xr 8026 df-ltxr 8027 df-le 8028 df-sub 8160 df-neg 8161 df-reap 8562 df-inn 8950 df-2 9008 df-3 9009 df-4 9010 df-5 9011 df-6 9012 df-7 9013 df-8 9014 df-9 9015 df-n0 9207 df-z 9284 df-dec 9415 df-uz 9559 df-fz 10039 df-cj 10883 df-struct 12514 df-ndx 12515 df-slot 12516 df-base 12518 df-sets 12519 df-iress 12520 df-plusg 12602 df-mulr 12603 df-starv 12604 df-0g 12763 df-mgm 12832 df-sgrp 12865 df-mnd 12878 df-grp 12948 df-minusg 12949 df-subg 13109 df-cmn 13225 df-mgp 13275 df-ur 13314 df-ring 13352 df-cring 13353 df-subrg 13566 df-icnfld 13865 df-zring 13890 |
This theorem is referenced by: zringabl 13893 zringgrp 13894 zringnzr 13901 dvdsrzring 13902 mulgrhm 13907 zrhvalg 13915 zrhex 13918 zlmval 13923 zlmlemg 13924 zlmsca 13928 zlmvscag 13929 znlidl 13930 znval 13932 znle 13933 znbaslemnn 13935 znbas 13939 |
Copyright terms: Public domain | W3C validator |