| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zringring | GIF version | ||
| Description: The ring of integers is a ring. (Contributed by AV, 20-May-2019.) (Revised by AV, 9-Jun-2019.) (Proof shortened by AV, 13-Jun-2019.) |
| Ref | Expression |
|---|---|
| zringring | ⊢ ℤring ∈ Ring |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zringcrng 14404 | . 2 ⊢ ℤring ∈ CRing | |
| 2 | crngring 13820 | . 2 ⊢ (ℤring ∈ CRing → ℤring ∈ Ring) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ℤring ∈ Ring |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 Ringcrg 13808 CRingccrg 13809 ℤringczring 14402 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-mulrcl 8037 ax-addcom 8038 ax-mulcom 8039 ax-addass 8040 ax-mulass 8041 ax-distr 8042 ax-i2m1 8043 ax-0lt1 8044 ax-1rid 8045 ax-0id 8046 ax-rnegex 8047 ax-precex 8048 ax-cnre 8049 ax-pre-ltirr 8050 ax-pre-ltwlin 8051 ax-pre-lttrn 8052 ax-pre-apti 8053 ax-pre-ltadd 8054 ax-pre-mulgt0 8055 ax-addf 8060 ax-mulf 8061 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-tp 3643 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-1st 6236 df-2nd 6237 df-pnf 8122 df-mnf 8123 df-xr 8124 df-ltxr 8125 df-le 8126 df-sub 8258 df-neg 8259 df-reap 8661 df-inn 9050 df-2 9108 df-3 9109 df-4 9110 df-5 9111 df-6 9112 df-7 9113 df-8 9114 df-9 9115 df-n0 9309 df-z 9386 df-dec 9518 df-uz 9662 df-rp 9789 df-fz 10144 df-cj 11203 df-abs 11360 df-struct 12884 df-ndx 12885 df-slot 12886 df-base 12888 df-sets 12889 df-iress 12890 df-plusg 12972 df-mulr 12973 df-starv 12974 df-tset 12978 df-ple 12979 df-ds 12981 df-unif 12982 df-0g 13140 df-topgen 13142 df-mgm 13238 df-sgrp 13284 df-mnd 13299 df-grp 13385 df-minusg 13386 df-subg 13556 df-cmn 13672 df-mgp 13733 df-ur 13772 df-ring 13810 df-cring 13811 df-subrg 14031 df-bl 14358 df-mopn 14359 df-fg 14361 df-metu 14362 df-cnfld 14369 df-zring 14403 |
| This theorem is referenced by: zringabl 14406 zringgrp 14407 zringnzr 14414 dvdsrzring 14415 mulgrhm 14421 zrhval 14429 zrhvalg 14430 zrhex 14433 zlmval 14439 zlmlemg 14440 zlmsca 14444 zlmvscag 14445 znlidl 14446 znval 14448 znle 14449 znbaslemnn 14451 znbas 14456 znzrh2 14458 znzrhval 14459 znzrhfo 14460 zndvds 14461 lgseisenlem4 15600 |
| Copyright terms: Public domain | W3C validator |