| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zringring | GIF version | ||
| Description: The ring of integers is a ring. (Contributed by AV, 20-May-2019.) (Revised by AV, 9-Jun-2019.) (Proof shortened by AV, 13-Jun-2019.) |
| Ref | Expression |
|---|---|
| zringring | ⊢ ℤring ∈ Ring |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zringcrng 14158 | . 2 ⊢ ℤring ∈ CRing | |
| 2 | crngring 13574 | . 2 ⊢ (ℤring ∈ CRing → ℤring ∈ Ring) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ℤring ∈ Ring |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 Ringcrg 13562 CRingccrg 13563 ℤringczring 14156 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7972 ax-resscn 7973 ax-1cn 7974 ax-1re 7975 ax-icn 7976 ax-addcl 7977 ax-addrcl 7978 ax-mulcl 7979 ax-mulrcl 7980 ax-addcom 7981 ax-mulcom 7982 ax-addass 7983 ax-mulass 7984 ax-distr 7985 ax-i2m1 7986 ax-0lt1 7987 ax-1rid 7988 ax-0id 7989 ax-rnegex 7990 ax-precex 7991 ax-cnre 7992 ax-pre-ltirr 7993 ax-pre-ltwlin 7994 ax-pre-lttrn 7995 ax-pre-apti 7996 ax-pre-ltadd 7997 ax-pre-mulgt0 7998 ax-addf 8003 ax-mulf 8004 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-tp 3631 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5878 df-ov 5926 df-oprab 5927 df-mpo 5928 df-1st 6199 df-2nd 6200 df-pnf 8065 df-mnf 8066 df-xr 8067 df-ltxr 8068 df-le 8069 df-sub 8201 df-neg 8202 df-reap 8604 df-inn 8993 df-2 9051 df-3 9052 df-4 9053 df-5 9054 df-6 9055 df-7 9056 df-8 9057 df-9 9058 df-n0 9252 df-z 9329 df-dec 9460 df-uz 9604 df-rp 9731 df-fz 10086 df-cj 11009 df-abs 11166 df-struct 12690 df-ndx 12691 df-slot 12692 df-base 12694 df-sets 12695 df-iress 12696 df-plusg 12778 df-mulr 12779 df-starv 12780 df-tset 12784 df-ple 12785 df-ds 12787 df-unif 12788 df-0g 12939 df-topgen 12941 df-mgm 13009 df-sgrp 13055 df-mnd 13068 df-grp 13145 df-minusg 13146 df-subg 13310 df-cmn 13426 df-mgp 13487 df-ur 13526 df-ring 13564 df-cring 13565 df-subrg 13785 df-bl 14112 df-mopn 14113 df-fg 14115 df-metu 14116 df-cnfld 14123 df-zring 14157 |
| This theorem is referenced by: zringabl 14160 zringgrp 14161 zringnzr 14168 dvdsrzring 14169 mulgrhm 14175 zrhval 14183 zrhvalg 14184 zrhex 14187 zlmval 14193 zlmlemg 14194 zlmsca 14198 zlmvscag 14199 znlidl 14200 znval 14202 znle 14203 znbaslemnn 14205 znbas 14210 znzrh2 14212 znzrhval 14213 znzrhfo 14214 zndvds 14215 lgseisenlem4 15324 |
| Copyright terms: Public domain | W3C validator |