Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3eqtr4rd | GIF version |
Description: A deduction from three chained equalities. (Contributed by NM, 21-Sep-1995.) |
Ref | Expression |
---|---|
3eqtr4d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
3eqtr4d.2 | ⊢ (𝜑 → 𝐶 = 𝐴) |
3eqtr4d.3 | ⊢ (𝜑 → 𝐷 = 𝐵) |
Ref | Expression |
---|---|
3eqtr4rd | ⊢ (𝜑 → 𝐷 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr4d.3 | . . 3 ⊢ (𝜑 → 𝐷 = 𝐵) | |
2 | 3eqtr4d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 1, 2 | eqtr4d 2201 | . 2 ⊢ (𝜑 → 𝐷 = 𝐴) |
4 | 3eqtr4d.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐴) | |
5 | 3, 4 | eqtr4d 2201 | 1 ⊢ (𝜑 → 𝐷 = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 ax-17 1514 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 |
This theorem is referenced by: csbcnvg 4787 fvco4 5557 phplem4 6817 phplem4on 6829 omp1eomlem 7055 ctssdclemn0 7071 recexnq 7327 prarloclemcalc 7439 addcomprg 7515 mulcomprg 7517 mulcmpblnrlemg 7677 axmulass 7810 divnegap 8598 modqlt 10264 modqmulnn 10273 seq3val 10389 seqvalcd 10390 seq3caopr3 10412 seq3f1olemqsumkj 10429 seq3f1olemqsumk 10430 seq3f1olemqsum 10431 seq3f1o 10435 bcval5 10672 omgadd 10711 seq3coll 10751 cjreb 10804 recj 10805 imcj 10813 imval2 10832 resqrexlemover 10948 sqrtmul 10973 amgm2 11056 maxabslemab 11144 xrmaxadd 11198 summodclem2a 11318 fsumf1o 11327 sumsnf 11346 sumsplitdc 11369 fsummulc2 11385 binom 11421 bcxmas 11426 expcnvap0 11439 expcnv 11441 cvgratnnlemnexp 11461 cvgratnnlemmn 11462 prodmodclem3 11512 fprodseq 11520 fprodf1o 11525 prodsnf 11529 fprodfac 11552 fprodabs 11553 ege2le3 11608 efaddlem 11611 eftlub 11627 tanval3ap 11651 tannegap 11665 cosmul 11682 cos01bnd 11695 demoivreALT 11710 flodddiv4 11867 dfgcd3 11939 absmulgcd 11946 sqpweven 12103 2sqpwodd 12104 crth 12152 eulerthlema 12158 phisum 12168 pythagtriplem14 12205 pythagtriplem19 12210 pcmul 12229 pcfac 12276 ctiunctlemfo 12368 setsslnid 12441 txbasval 12867 rplogbchbase 13468 lgsdir2 13534 lgsdir 13536 lgsdi 13538 lgsdirnn0 13548 lgsdinn0 13549 |
Copyright terms: Public domain | W3C validator |