![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3eqtr4rd | GIF version |
Description: A deduction from three chained equalities. (Contributed by NM, 21-Sep-1995.) |
Ref | Expression |
---|---|
3eqtr4d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
3eqtr4d.2 | ⊢ (𝜑 → 𝐶 = 𝐴) |
3eqtr4d.3 | ⊢ (𝜑 → 𝐷 = 𝐵) |
Ref | Expression |
---|---|
3eqtr4rd | ⊢ (𝜑 → 𝐷 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr4d.3 | . . 3 ⊢ (𝜑 → 𝐷 = 𝐵) | |
2 | 3eqtr4d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 1, 2 | eqtr4d 2130 | . 2 ⊢ (𝜑 → 𝐷 = 𝐴) |
4 | 3eqtr4d.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐴) | |
5 | 3, 4 | eqtr4d 2130 | 1 ⊢ (𝜑 → 𝐷 = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1296 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1388 ax-gen 1390 ax-4 1452 ax-17 1471 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-cleq 2088 |
This theorem is referenced by: csbcnvg 4651 fvco4 5411 phplem4 6651 phplem4on 6663 recexnq 7046 prarloclemcalc 7158 addcomprg 7234 mulcomprg 7236 mulcmpblnrlemg 7383 axmulass 7505 divnegap 8270 modqlt 9889 modqmulnn 9898 iseqvalt 10019 seq3val 10020 seq3caopr3 10047 seq3f1olemqsumkj 10064 seq3f1olemqsumk 10065 seq3f1olemqsum 10066 seq3f1o 10070 bcval5 10302 omgadd 10341 seq3coll 10378 cjreb 10431 recj 10432 imcj 10440 imval2 10459 resqrexlemover 10574 sqrtmul 10599 amgm2 10682 maxabslemab 10770 xrmaxadd 10820 summodclem2a 10940 fsumf1o 10949 sumsnf 10968 sumsplitdc 10991 fsummulc2 11007 binom 11043 bcxmas 11048 expcnvap0 11061 expcnv 11063 cvgratnnlemnexp 11083 cvgratnnlemmn 11084 ege2le3 11126 efaddlem 11129 eftlub 11145 tanval3ap 11170 tannegap 11184 cosmul 11201 cos01bnd 11214 demoivreALT 11228 flodddiv4 11377 dfgcd3 11442 absmulgcd 11449 sqpweven 11596 2sqpwodd 11597 crth 11643 setsslnid 11710 |
Copyright terms: Public domain | W3C validator |