Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3eqtr4rd | GIF version |
Description: A deduction from three chained equalities. (Contributed by NM, 21-Sep-1995.) |
Ref | Expression |
---|---|
3eqtr4d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
3eqtr4d.2 | ⊢ (𝜑 → 𝐶 = 𝐴) |
3eqtr4d.3 | ⊢ (𝜑 → 𝐷 = 𝐵) |
Ref | Expression |
---|---|
3eqtr4rd | ⊢ (𝜑 → 𝐷 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr4d.3 | . . 3 ⊢ (𝜑 → 𝐷 = 𝐵) | |
2 | 3eqtr4d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 1, 2 | eqtr4d 2206 | . 2 ⊢ (𝜑 → 𝐷 = 𝐴) |
4 | 3eqtr4d.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐴) | |
5 | 3, 4 | eqtr4d 2206 | 1 ⊢ (𝜑 → 𝐷 = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-4 1503 ax-17 1519 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 |
This theorem is referenced by: csbcnvg 4795 fvco4 5568 phplem4 6833 phplem4on 6845 omp1eomlem 7071 ctssdclemn0 7087 recexnq 7352 prarloclemcalc 7464 addcomprg 7540 mulcomprg 7542 mulcmpblnrlemg 7702 axmulass 7835 divnegap 8623 modqlt 10289 modqmulnn 10298 seq3val 10414 seqvalcd 10415 seq3caopr3 10437 seq3f1olemqsumkj 10454 seq3f1olemqsumk 10455 seq3f1olemqsum 10456 seq3f1o 10460 bcval5 10697 omgadd 10737 seq3coll 10777 cjreb 10830 recj 10831 imcj 10839 imval2 10858 resqrexlemover 10974 sqrtmul 10999 amgm2 11082 maxabslemab 11170 xrmaxadd 11224 summodclem2a 11344 fsumf1o 11353 sumsnf 11372 sumsplitdc 11395 fsummulc2 11411 binom 11447 bcxmas 11452 expcnvap0 11465 expcnv 11467 cvgratnnlemnexp 11487 cvgratnnlemmn 11488 prodmodclem3 11538 fprodseq 11546 fprodf1o 11551 prodsnf 11555 fprodfac 11578 fprodabs 11579 ege2le3 11634 efaddlem 11637 eftlub 11653 tanval3ap 11677 tannegap 11691 cosmul 11708 cos01bnd 11721 demoivreALT 11736 flodddiv4 11893 dfgcd3 11965 absmulgcd 11972 sqpweven 12129 2sqpwodd 12130 crth 12178 eulerthlema 12184 phisum 12194 pythagtriplem14 12231 pythagtriplem19 12236 pcmul 12255 pcfac 12302 ctiunctlemfo 12394 setsslnid 12467 txbasval 13061 rplogbchbase 13662 lgsdir2 13728 lgsdir 13730 lgsdi 13732 lgsdirnn0 13742 lgsdinn0 13743 |
Copyright terms: Public domain | W3C validator |