ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsfvalg GIF version

Theorem lgsfvalg 14884
Description: Value of the function 𝐹 which defines the Legendre symbol at the primes. (Contributed by Mario Carneiro, 4-Feb-2015.) (Revised by Jim Kingdon, 4-Nov-2024.)
Hypothesis
Ref Expression
lgsval.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1))
Assertion
Ref Expression
lgsfvalg ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝐹𝑀) = if(𝑀 ∈ ℙ, (if(𝑀 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) − 1))↑(𝑀 pCnt 𝑁)), 1))
Distinct variable groups:   𝐴,𝑛   𝑛,𝑀   𝑛,𝑁
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem lgsfvalg
StepHypRef Expression
1 lgsval.1 . 2 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1))
2 eleq1 2252 . . 3 (𝑛 = 𝑀 → (𝑛 ∈ ℙ ↔ 𝑀 ∈ ℙ))
3 eqeq1 2196 . . . . 5 (𝑛 = 𝑀 → (𝑛 = 2 ↔ 𝑀 = 2))
4 oveq1 5904 . . . . . . . . . 10 (𝑛 = 𝑀 → (𝑛 − 1) = (𝑀 − 1))
54oveq1d 5912 . . . . . . . . 9 (𝑛 = 𝑀 → ((𝑛 − 1) / 2) = ((𝑀 − 1) / 2))
65oveq2d 5913 . . . . . . . 8 (𝑛 = 𝑀 → (𝐴↑((𝑛 − 1) / 2)) = (𝐴↑((𝑀 − 1) / 2)))
76oveq1d 5912 . . . . . . 7 (𝑛 = 𝑀 → ((𝐴↑((𝑛 − 1) / 2)) + 1) = ((𝐴↑((𝑀 − 1) / 2)) + 1))
8 id 19 . . . . . . 7 (𝑛 = 𝑀𝑛 = 𝑀)
97, 8oveq12d 5915 . . . . . 6 (𝑛 = 𝑀 → (((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) = (((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀))
109oveq1d 5912 . . . . 5 (𝑛 = 𝑀 → ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1) = ((((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) − 1))
113, 10ifbieq2d 3573 . . . 4 (𝑛 = 𝑀 → if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1)) = if(𝑀 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) − 1)))
12 oveq1 5904 . . . 4 (𝑛 = 𝑀 → (𝑛 pCnt 𝑁) = (𝑀 pCnt 𝑁))
1311, 12oveq12d 5915 . . 3 (𝑛 = 𝑀 → (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)) = (if(𝑀 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) − 1))↑(𝑀 pCnt 𝑁)))
142, 13ifbieq1d 3571 . 2 (𝑛 = 𝑀 → if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1) = if(𝑀 ∈ ℙ, (if(𝑀 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) − 1))↑(𝑀 pCnt 𝑁)), 1))
15 simp3 1001 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℕ)
16 0zd 9296 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ 𝑀 = 2) → 0 ∈ ℤ)
17 1zzd 9311 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ 𝑀 = 2) → 1 ∈ ℤ)
18 neg1z 9316 . . . . . . . 8 -1 ∈ ℤ
1918a1i 9 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ 𝑀 = 2) → -1 ∈ ℤ)
20 id 19 . . . . . . . . . . . . . 14 (𝐴 ∈ ℤ → 𝐴 ∈ ℤ)
21 8nn 9117 . . . . . . . . . . . . . . 15 8 ∈ ℕ
2221a1i 9 . . . . . . . . . . . . . 14 (𝐴 ∈ ℤ → 8 ∈ ℕ)
2320, 22zmodcld 10378 . . . . . . . . . . . . 13 (𝐴 ∈ ℤ → (𝐴 mod 8) ∈ ℕ0)
2423nn0zd 9404 . . . . . . . . . . . 12 (𝐴 ∈ ℤ → (𝐴 mod 8) ∈ ℤ)
25 1zzd 9311 . . . . . . . . . . . 12 (𝐴 ∈ ℤ → 1 ∈ ℤ)
26 zdceq 9359 . . . . . . . . . . . 12 (((𝐴 mod 8) ∈ ℤ ∧ 1 ∈ ℤ) → DECID (𝐴 mod 8) = 1)
2724, 25, 26syl2anc 411 . . . . . . . . . . 11 (𝐴 ∈ ℤ → DECID (𝐴 mod 8) = 1)
28 7nn 9116 . . . . . . . . . . . . 13 7 ∈ ℕ
2928nnzi 9305 . . . . . . . . . . . 12 7 ∈ ℤ
30 zdceq 9359 . . . . . . . . . . . 12 (((𝐴 mod 8) ∈ ℤ ∧ 7 ∈ ℤ) → DECID (𝐴 mod 8) = 7)
3124, 29, 30sylancl 413 . . . . . . . . . . 11 (𝐴 ∈ ℤ → DECID (𝐴 mod 8) = 7)
32 dcor 937 . . . . . . . . . . 11 (DECID (𝐴 mod 8) = 1 → (DECID (𝐴 mod 8) = 7 → DECID ((𝐴 mod 8) = 1 ∨ (𝐴 mod 8) = 7)))
3327, 31, 32sylc 62 . . . . . . . . . 10 (𝐴 ∈ ℤ → DECID ((𝐴 mod 8) = 1 ∨ (𝐴 mod 8) = 7))
34 elprg 3627 . . . . . . . . . . . 12 ((𝐴 mod 8) ∈ ℕ0 → ((𝐴 mod 8) ∈ {1, 7} ↔ ((𝐴 mod 8) = 1 ∨ (𝐴 mod 8) = 7)))
3523, 34syl 14 . . . . . . . . . . 11 (𝐴 ∈ ℤ → ((𝐴 mod 8) ∈ {1, 7} ↔ ((𝐴 mod 8) = 1 ∨ (𝐴 mod 8) = 7)))
3635dcbid 839 . . . . . . . . . 10 (𝐴 ∈ ℤ → (DECID (𝐴 mod 8) ∈ {1, 7} ↔ DECID ((𝐴 mod 8) = 1 ∨ (𝐴 mod 8) = 7)))
3733, 36mpbird 167 . . . . . . . . 9 (𝐴 ∈ ℤ → DECID (𝐴 mod 8) ∈ {1, 7})
38373ad2ant1 1020 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → DECID (𝐴 mod 8) ∈ {1, 7})
3938ad2antrr 488 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ 𝑀 = 2) → DECID (𝐴 mod 8) ∈ {1, 7})
4017, 19, 39ifcldcd 3585 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ 𝑀 = 2) → if((𝐴 mod 8) ∈ {1, 7}, 1, -1) ∈ ℤ)
41 2nn 9111 . . . . . . . 8 2 ∈ ℕ
4241a1i 9 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ 𝑀 = 2) → 2 ∈ ℕ)
43 simpll1 1038 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ 𝑀 = 2) → 𝐴 ∈ ℤ)
44 dvdsdc 11840 . . . . . . 7 ((2 ∈ ℕ ∧ 𝐴 ∈ ℤ) → DECID 2 ∥ 𝐴)
4542, 43, 44syl2anc 411 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ 𝑀 = 2) → DECID 2 ∥ 𝐴)
4616, 40, 45ifcldcd 3585 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ 𝑀 = 2) → if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) ∈ ℤ)
47 simpll1 1038 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ ¬ 𝑀 = 2) → 𝐴 ∈ ℤ)
48 simpr 110 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ ¬ 𝑀 = 2) → ¬ 𝑀 = 2)
49 prm2orodd 12161 . . . . . . . . . . . . . 14 (𝑀 ∈ ℙ → (𝑀 = 2 ∨ ¬ 2 ∥ 𝑀))
5049orcomd 730 . . . . . . . . . . . . 13 (𝑀 ∈ ℙ → (¬ 2 ∥ 𝑀𝑀 = 2))
5150ad2antlr 489 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ ¬ 𝑀 = 2) → (¬ 2 ∥ 𝑀𝑀 = 2))
5248, 51ecased 1360 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ ¬ 𝑀 = 2) → ¬ 2 ∥ 𝑀)
5315ad2antrr 488 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ ¬ 𝑀 = 2) → 𝑀 ∈ ℕ)
5453nnnn0d 9260 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ ¬ 𝑀 = 2) → 𝑀 ∈ ℕ0)
55 nn0oddm1d2 11949 . . . . . . . . . . . 12 (𝑀 ∈ ℕ0 → (¬ 2 ∥ 𝑀 ↔ ((𝑀 − 1) / 2) ∈ ℕ0))
5654, 55syl 14 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ ¬ 𝑀 = 2) → (¬ 2 ∥ 𝑀 ↔ ((𝑀 − 1) / 2) ∈ ℕ0))
5752, 56mpbid 147 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ ¬ 𝑀 = 2) → ((𝑀 − 1) / 2) ∈ ℕ0)
58 zexpcl 10569 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ ((𝑀 − 1) / 2) ∈ ℕ0) → (𝐴↑((𝑀 − 1) / 2)) ∈ ℤ)
5947, 57, 58syl2anc 411 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ ¬ 𝑀 = 2) → (𝐴↑((𝑀 − 1) / 2)) ∈ ℤ)
6059peano2zd 9409 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ ¬ 𝑀 = 2) → ((𝐴↑((𝑀 − 1) / 2)) + 1) ∈ ℤ)
6160, 53zmodcld 10378 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ ¬ 𝑀 = 2) → (((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) ∈ ℕ0)
6261nn0zd 9404 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ ¬ 𝑀 = 2) → (((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) ∈ ℤ)
63 1zzd 9311 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ ¬ 𝑀 = 2) → 1 ∈ ℤ)
6462, 63zsubcld 9411 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ ¬ 𝑀 = 2) → ((((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) − 1) ∈ ℤ)
65 simpl3 1004 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) → 𝑀 ∈ ℕ)
6665nnzd 9405 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) → 𝑀 ∈ ℤ)
67 2z 9312 . . . . . 6 2 ∈ ℤ
68 zdceq 9359 . . . . . 6 ((𝑀 ∈ ℤ ∧ 2 ∈ ℤ) → DECID 𝑀 = 2)
6966, 67, 68sylancl 413 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) → DECID 𝑀 = 2)
7046, 64, 69ifcldadc 3578 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) → if(𝑀 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) − 1)) ∈ ℤ)
71 simpr 110 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) → 𝑀 ∈ ℙ)
72 simpl2 1003 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) → 𝑁 ∈ ℕ)
7371, 72pccld 12335 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) → (𝑀 pCnt 𝑁) ∈ ℕ0)
74 zexpcl 10569 . . . 4 ((if(𝑀 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) − 1)) ∈ ℤ ∧ (𝑀 pCnt 𝑁) ∈ ℕ0) → (if(𝑀 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) − 1))↑(𝑀 pCnt 𝑁)) ∈ ℤ)
7570, 73, 74syl2anc 411 . . 3 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) → (if(𝑀 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) − 1))↑(𝑀 pCnt 𝑁)) ∈ ℤ)
76 1zzd 9311 . . 3 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ ¬ 𝑀 ∈ ℙ) → 1 ∈ ℤ)
77 prmdc 12165 . . . 4 (𝑀 ∈ ℕ → DECID 𝑀 ∈ ℙ)
7815, 77syl 14 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → DECID 𝑀 ∈ ℙ)
7975, 76, 78ifcldadc 3578 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → if(𝑀 ∈ ℙ, (if(𝑀 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) − 1))↑(𝑀 pCnt 𝑁)), 1) ∈ ℤ)
801, 14, 15, 79fvmptd3 5630 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝐹𝑀) = if(𝑀 ∈ ℙ, (if(𝑀 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) − 1))↑(𝑀 pCnt 𝑁)), 1))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835  w3a 980   = wceq 1364  wcel 2160  ifcif 3549  {cpr 3608   class class class wbr 4018  cmpt 4079  cfv 5235  (class class class)co 5897  0cc0 7842  1c1 7843   + caddc 7845  cmin 8159  -cneg 8160   / cdiv 8660  cn 8950  2c2 9001  7c7 9006  8c8 9007  0cn0 9207  cz 9284   mod cmo 10355  cexp 10553  cdvds 11829  cprime 12142   pCnt cpc 12319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-precex 7952  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958  ax-pre-mulgt0 7959  ax-pre-mulext 7960  ax-arch 7961  ax-caucvg 7962
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-isom 5244  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-frec 6417  df-1o 6442  df-2o 6443  df-er 6560  df-en 6768  df-fin 6770  df-sup 7014  df-inf 7015  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-reap 8563  df-ap 8570  df-div 8661  df-inn 8951  df-2 9009  df-3 9010  df-4 9011  df-5 9012  df-6 9013  df-7 9014  df-8 9015  df-n0 9208  df-z 9285  df-uz 9560  df-q 9652  df-rp 9686  df-fz 10041  df-fzo 10175  df-fl 10303  df-mod 10356  df-seqfrec 10479  df-exp 10554  df-cj 10886  df-re 10887  df-im 10888  df-rsqrt 11042  df-abs 11043  df-dvds 11830  df-gcd 11979  df-prm 12143  df-pc 12320
This theorem is referenced by:  lgsval2lem  14889
  Copyright terms: Public domain W3C validator