ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsfvalg GIF version

Theorem lgsfvalg 15424
Description: Value of the function 𝐹 which defines the Legendre symbol at the primes. (Contributed by Mario Carneiro, 4-Feb-2015.) (Revised by Jim Kingdon, 4-Nov-2024.)
Hypothesis
Ref Expression
lgsval.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1))
Assertion
Ref Expression
lgsfvalg ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝐹𝑀) = if(𝑀 ∈ ℙ, (if(𝑀 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) − 1))↑(𝑀 pCnt 𝑁)), 1))
Distinct variable groups:   𝐴,𝑛   𝑛,𝑀   𝑛,𝑁
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem lgsfvalg
StepHypRef Expression
1 lgsval.1 . 2 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1))
2 eleq1 2267 . . 3 (𝑛 = 𝑀 → (𝑛 ∈ ℙ ↔ 𝑀 ∈ ℙ))
3 eqeq1 2211 . . . . 5 (𝑛 = 𝑀 → (𝑛 = 2 ↔ 𝑀 = 2))
4 oveq1 5950 . . . . . . . . . 10 (𝑛 = 𝑀 → (𝑛 − 1) = (𝑀 − 1))
54oveq1d 5958 . . . . . . . . 9 (𝑛 = 𝑀 → ((𝑛 − 1) / 2) = ((𝑀 − 1) / 2))
65oveq2d 5959 . . . . . . . 8 (𝑛 = 𝑀 → (𝐴↑((𝑛 − 1) / 2)) = (𝐴↑((𝑀 − 1) / 2)))
76oveq1d 5958 . . . . . . 7 (𝑛 = 𝑀 → ((𝐴↑((𝑛 − 1) / 2)) + 1) = ((𝐴↑((𝑀 − 1) / 2)) + 1))
8 id 19 . . . . . . 7 (𝑛 = 𝑀𝑛 = 𝑀)
97, 8oveq12d 5961 . . . . . 6 (𝑛 = 𝑀 → (((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) = (((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀))
109oveq1d 5958 . . . . 5 (𝑛 = 𝑀 → ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1) = ((((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) − 1))
113, 10ifbieq2d 3594 . . . 4 (𝑛 = 𝑀 → if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1)) = if(𝑀 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) − 1)))
12 oveq1 5950 . . . 4 (𝑛 = 𝑀 → (𝑛 pCnt 𝑁) = (𝑀 pCnt 𝑁))
1311, 12oveq12d 5961 . . 3 (𝑛 = 𝑀 → (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)) = (if(𝑀 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) − 1))↑(𝑀 pCnt 𝑁)))
142, 13ifbieq1d 3592 . 2 (𝑛 = 𝑀 → if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1) = if(𝑀 ∈ ℙ, (if(𝑀 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) − 1))↑(𝑀 pCnt 𝑁)), 1))
15 simp3 1001 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℕ)
16 0zd 9383 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ 𝑀 = 2) → 0 ∈ ℤ)
17 1zzd 9398 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ 𝑀 = 2) → 1 ∈ ℤ)
18 neg1z 9403 . . . . . . . 8 -1 ∈ ℤ
1918a1i 9 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ 𝑀 = 2) → -1 ∈ ℤ)
20 id 19 . . . . . . . . . . . . . 14 (𝐴 ∈ ℤ → 𝐴 ∈ ℤ)
21 8nn 9203 . . . . . . . . . . . . . . 15 8 ∈ ℕ
2221a1i 9 . . . . . . . . . . . . . 14 (𝐴 ∈ ℤ → 8 ∈ ℕ)
2320, 22zmodcld 10488 . . . . . . . . . . . . 13 (𝐴 ∈ ℤ → (𝐴 mod 8) ∈ ℕ0)
2423nn0zd 9492 . . . . . . . . . . . 12 (𝐴 ∈ ℤ → (𝐴 mod 8) ∈ ℤ)
25 1zzd 9398 . . . . . . . . . . . 12 (𝐴 ∈ ℤ → 1 ∈ ℤ)
26 zdceq 9447 . . . . . . . . . . . 12 (((𝐴 mod 8) ∈ ℤ ∧ 1 ∈ ℤ) → DECID (𝐴 mod 8) = 1)
2724, 25, 26syl2anc 411 . . . . . . . . . . 11 (𝐴 ∈ ℤ → DECID (𝐴 mod 8) = 1)
28 7nn 9202 . . . . . . . . . . . . 13 7 ∈ ℕ
2928nnzi 9392 . . . . . . . . . . . 12 7 ∈ ℤ
30 zdceq 9447 . . . . . . . . . . . 12 (((𝐴 mod 8) ∈ ℤ ∧ 7 ∈ ℤ) → DECID (𝐴 mod 8) = 7)
3124, 29, 30sylancl 413 . . . . . . . . . . 11 (𝐴 ∈ ℤ → DECID (𝐴 mod 8) = 7)
32 dcor 937 . . . . . . . . . . 11 (DECID (𝐴 mod 8) = 1 → (DECID (𝐴 mod 8) = 7 → DECID ((𝐴 mod 8) = 1 ∨ (𝐴 mod 8) = 7)))
3327, 31, 32sylc 62 . . . . . . . . . 10 (𝐴 ∈ ℤ → DECID ((𝐴 mod 8) = 1 ∨ (𝐴 mod 8) = 7))
34 elprg 3652 . . . . . . . . . . . 12 ((𝐴 mod 8) ∈ ℕ0 → ((𝐴 mod 8) ∈ {1, 7} ↔ ((𝐴 mod 8) = 1 ∨ (𝐴 mod 8) = 7)))
3523, 34syl 14 . . . . . . . . . . 11 (𝐴 ∈ ℤ → ((𝐴 mod 8) ∈ {1, 7} ↔ ((𝐴 mod 8) = 1 ∨ (𝐴 mod 8) = 7)))
3635dcbid 839 . . . . . . . . . 10 (𝐴 ∈ ℤ → (DECID (𝐴 mod 8) ∈ {1, 7} ↔ DECID ((𝐴 mod 8) = 1 ∨ (𝐴 mod 8) = 7)))
3733, 36mpbird 167 . . . . . . . . 9 (𝐴 ∈ ℤ → DECID (𝐴 mod 8) ∈ {1, 7})
38373ad2ant1 1020 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → DECID (𝐴 mod 8) ∈ {1, 7})
3938ad2antrr 488 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ 𝑀 = 2) → DECID (𝐴 mod 8) ∈ {1, 7})
4017, 19, 39ifcldcd 3607 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ 𝑀 = 2) → if((𝐴 mod 8) ∈ {1, 7}, 1, -1) ∈ ℤ)
41 2nn 9197 . . . . . . . 8 2 ∈ ℕ
4241a1i 9 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ 𝑀 = 2) → 2 ∈ ℕ)
43 simpll1 1038 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ 𝑀 = 2) → 𝐴 ∈ ℤ)
44 dvdsdc 12051 . . . . . . 7 ((2 ∈ ℕ ∧ 𝐴 ∈ ℤ) → DECID 2 ∥ 𝐴)
4542, 43, 44syl2anc 411 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ 𝑀 = 2) → DECID 2 ∥ 𝐴)
4616, 40, 45ifcldcd 3607 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ 𝑀 = 2) → if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) ∈ ℤ)
47 simpll1 1038 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ ¬ 𝑀 = 2) → 𝐴 ∈ ℤ)
48 simpr 110 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ ¬ 𝑀 = 2) → ¬ 𝑀 = 2)
49 prm2orodd 12390 . . . . . . . . . . . . . 14 (𝑀 ∈ ℙ → (𝑀 = 2 ∨ ¬ 2 ∥ 𝑀))
5049orcomd 730 . . . . . . . . . . . . 13 (𝑀 ∈ ℙ → (¬ 2 ∥ 𝑀𝑀 = 2))
5150ad2antlr 489 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ ¬ 𝑀 = 2) → (¬ 2 ∥ 𝑀𝑀 = 2))
5248, 51ecased 1361 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ ¬ 𝑀 = 2) → ¬ 2 ∥ 𝑀)
5315ad2antrr 488 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ ¬ 𝑀 = 2) → 𝑀 ∈ ℕ)
5453nnnn0d 9347 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ ¬ 𝑀 = 2) → 𝑀 ∈ ℕ0)
55 nn0oddm1d2 12162 . . . . . . . . . . . 12 (𝑀 ∈ ℕ0 → (¬ 2 ∥ 𝑀 ↔ ((𝑀 − 1) / 2) ∈ ℕ0))
5654, 55syl 14 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ ¬ 𝑀 = 2) → (¬ 2 ∥ 𝑀 ↔ ((𝑀 − 1) / 2) ∈ ℕ0))
5752, 56mpbid 147 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ ¬ 𝑀 = 2) → ((𝑀 − 1) / 2) ∈ ℕ0)
58 zexpcl 10697 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ ((𝑀 − 1) / 2) ∈ ℕ0) → (𝐴↑((𝑀 − 1) / 2)) ∈ ℤ)
5947, 57, 58syl2anc 411 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ ¬ 𝑀 = 2) → (𝐴↑((𝑀 − 1) / 2)) ∈ ℤ)
6059peano2zd 9497 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ ¬ 𝑀 = 2) → ((𝐴↑((𝑀 − 1) / 2)) + 1) ∈ ℤ)
6160, 53zmodcld 10488 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ ¬ 𝑀 = 2) → (((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) ∈ ℕ0)
6261nn0zd 9492 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ ¬ 𝑀 = 2) → (((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) ∈ ℤ)
63 1zzd 9398 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ ¬ 𝑀 = 2) → 1 ∈ ℤ)
6462, 63zsubcld 9499 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ ¬ 𝑀 = 2) → ((((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) − 1) ∈ ℤ)
65 simpl3 1004 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) → 𝑀 ∈ ℕ)
6665nnzd 9493 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) → 𝑀 ∈ ℤ)
67 2z 9399 . . . . . 6 2 ∈ ℤ
68 zdceq 9447 . . . . . 6 ((𝑀 ∈ ℤ ∧ 2 ∈ ℤ) → DECID 𝑀 = 2)
6966, 67, 68sylancl 413 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) → DECID 𝑀 = 2)
7046, 64, 69ifcldadc 3599 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) → if(𝑀 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) − 1)) ∈ ℤ)
71 simpr 110 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) → 𝑀 ∈ ℙ)
72 simpl2 1003 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) → 𝑁 ∈ ℕ)
7371, 72pccld 12565 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) → (𝑀 pCnt 𝑁) ∈ ℕ0)
74 zexpcl 10697 . . . 4 ((if(𝑀 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) − 1)) ∈ ℤ ∧ (𝑀 pCnt 𝑁) ∈ ℕ0) → (if(𝑀 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) − 1))↑(𝑀 pCnt 𝑁)) ∈ ℤ)
7570, 73, 74syl2anc 411 . . 3 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) → (if(𝑀 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) − 1))↑(𝑀 pCnt 𝑁)) ∈ ℤ)
76 1zzd 9398 . . 3 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ ¬ 𝑀 ∈ ℙ) → 1 ∈ ℤ)
77 prmdc 12394 . . . 4 (𝑀 ∈ ℕ → DECID 𝑀 ∈ ℙ)
7815, 77syl 14 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → DECID 𝑀 ∈ ℙ)
7975, 76, 78ifcldadc 3599 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → if(𝑀 ∈ ℙ, (if(𝑀 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) − 1))↑(𝑀 pCnt 𝑁)), 1) ∈ ℤ)
801, 14, 15, 79fvmptd3 5672 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝐹𝑀) = if(𝑀 ∈ ℙ, (if(𝑀 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) − 1))↑(𝑀 pCnt 𝑁)), 1))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835  w3a 980   = wceq 1372  wcel 2175  ifcif 3570  {cpr 3633   class class class wbr 4043  cmpt 4104  cfv 5270  (class class class)co 5943  0cc0 7924  1c1 7925   + caddc 7927  cmin 8242  -cneg 8243   / cdiv 8744  cn 9035  2c2 9086  7c7 9091  8c8 9092  0cn0 9294  cz 9371   mod cmo 10465  cexp 10681  cdvds 12040  cprime 12371   pCnt cpc 12549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042  ax-arch 8043  ax-caucvg 8044
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-xor 1395  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-isom 5279  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-frec 6476  df-1o 6501  df-2o 6502  df-er 6619  df-en 6827  df-fin 6829  df-sup 7085  df-inf 7086  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-5 9097  df-6 9098  df-7 9099  df-8 9100  df-n0 9295  df-z 9372  df-uz 9648  df-q 9740  df-rp 9775  df-fz 10130  df-fzo 10264  df-fl 10411  df-mod 10466  df-seqfrec 10591  df-exp 10682  df-cj 11095  df-re 11096  df-im 11097  df-rsqrt 11251  df-abs 11252  df-dvds 12041  df-gcd 12217  df-prm 12372  df-pc 12550
This theorem is referenced by:  lgsval2lem  15429
  Copyright terms: Public domain W3C validator