ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsfvalg GIF version

Theorem lgsfvalg 14409
Description: Value of the function 𝐹 which defines the Legendre symbol at the primes. (Contributed by Mario Carneiro, 4-Feb-2015.) (Revised by Jim Kingdon, 4-Nov-2024.)
Hypothesis
Ref Expression
lgsval.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1))
Assertion
Ref Expression
lgsfvalg ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝐹𝑀) = if(𝑀 ∈ ℙ, (if(𝑀 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) − 1))↑(𝑀 pCnt 𝑁)), 1))
Distinct variable groups:   𝐴,𝑛   𝑛,𝑀   𝑛,𝑁
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem lgsfvalg
StepHypRef Expression
1 lgsval.1 . 2 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1))
2 eleq1 2240 . . 3 (𝑛 = 𝑀 → (𝑛 ∈ ℙ ↔ 𝑀 ∈ ℙ))
3 eqeq1 2184 . . . . 5 (𝑛 = 𝑀 → (𝑛 = 2 ↔ 𝑀 = 2))
4 oveq1 5882 . . . . . . . . . 10 (𝑛 = 𝑀 → (𝑛 − 1) = (𝑀 − 1))
54oveq1d 5890 . . . . . . . . 9 (𝑛 = 𝑀 → ((𝑛 − 1) / 2) = ((𝑀 − 1) / 2))
65oveq2d 5891 . . . . . . . 8 (𝑛 = 𝑀 → (𝐴↑((𝑛 − 1) / 2)) = (𝐴↑((𝑀 − 1) / 2)))
76oveq1d 5890 . . . . . . 7 (𝑛 = 𝑀 → ((𝐴↑((𝑛 − 1) / 2)) + 1) = ((𝐴↑((𝑀 − 1) / 2)) + 1))
8 id 19 . . . . . . 7 (𝑛 = 𝑀𝑛 = 𝑀)
97, 8oveq12d 5893 . . . . . 6 (𝑛 = 𝑀 → (((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) = (((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀))
109oveq1d 5890 . . . . 5 (𝑛 = 𝑀 → ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1) = ((((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) − 1))
113, 10ifbieq2d 3559 . . . 4 (𝑛 = 𝑀 → if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1)) = if(𝑀 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) − 1)))
12 oveq1 5882 . . . 4 (𝑛 = 𝑀 → (𝑛 pCnt 𝑁) = (𝑀 pCnt 𝑁))
1311, 12oveq12d 5893 . . 3 (𝑛 = 𝑀 → (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)) = (if(𝑀 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) − 1))↑(𝑀 pCnt 𝑁)))
142, 13ifbieq1d 3557 . 2 (𝑛 = 𝑀 → if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1) = if(𝑀 ∈ ℙ, (if(𝑀 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) − 1))↑(𝑀 pCnt 𝑁)), 1))
15 simp3 999 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℕ)
16 0zd 9265 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ 𝑀 = 2) → 0 ∈ ℤ)
17 1zzd 9280 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ 𝑀 = 2) → 1 ∈ ℤ)
18 neg1z 9285 . . . . . . . 8 -1 ∈ ℤ
1918a1i 9 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ 𝑀 = 2) → -1 ∈ ℤ)
20 id 19 . . . . . . . . . . . . . 14 (𝐴 ∈ ℤ → 𝐴 ∈ ℤ)
21 8nn 9086 . . . . . . . . . . . . . . 15 8 ∈ ℕ
2221a1i 9 . . . . . . . . . . . . . 14 (𝐴 ∈ ℤ → 8 ∈ ℕ)
2320, 22zmodcld 10345 . . . . . . . . . . . . 13 (𝐴 ∈ ℤ → (𝐴 mod 8) ∈ ℕ0)
2423nn0zd 9373 . . . . . . . . . . . 12 (𝐴 ∈ ℤ → (𝐴 mod 8) ∈ ℤ)
25 1zzd 9280 . . . . . . . . . . . 12 (𝐴 ∈ ℤ → 1 ∈ ℤ)
26 zdceq 9328 . . . . . . . . . . . 12 (((𝐴 mod 8) ∈ ℤ ∧ 1 ∈ ℤ) → DECID (𝐴 mod 8) = 1)
2724, 25, 26syl2anc 411 . . . . . . . . . . 11 (𝐴 ∈ ℤ → DECID (𝐴 mod 8) = 1)
28 7nn 9085 . . . . . . . . . . . . 13 7 ∈ ℕ
2928nnzi 9274 . . . . . . . . . . . 12 7 ∈ ℤ
30 zdceq 9328 . . . . . . . . . . . 12 (((𝐴 mod 8) ∈ ℤ ∧ 7 ∈ ℤ) → DECID (𝐴 mod 8) = 7)
3124, 29, 30sylancl 413 . . . . . . . . . . 11 (𝐴 ∈ ℤ → DECID (𝐴 mod 8) = 7)
32 dcor 935 . . . . . . . . . . 11 (DECID (𝐴 mod 8) = 1 → (DECID (𝐴 mod 8) = 7 → DECID ((𝐴 mod 8) = 1 ∨ (𝐴 mod 8) = 7)))
3327, 31, 32sylc 62 . . . . . . . . . 10 (𝐴 ∈ ℤ → DECID ((𝐴 mod 8) = 1 ∨ (𝐴 mod 8) = 7))
34 elprg 3613 . . . . . . . . . . . 12 ((𝐴 mod 8) ∈ ℕ0 → ((𝐴 mod 8) ∈ {1, 7} ↔ ((𝐴 mod 8) = 1 ∨ (𝐴 mod 8) = 7)))
3523, 34syl 14 . . . . . . . . . . 11 (𝐴 ∈ ℤ → ((𝐴 mod 8) ∈ {1, 7} ↔ ((𝐴 mod 8) = 1 ∨ (𝐴 mod 8) = 7)))
3635dcbid 838 . . . . . . . . . 10 (𝐴 ∈ ℤ → (DECID (𝐴 mod 8) ∈ {1, 7} ↔ DECID ((𝐴 mod 8) = 1 ∨ (𝐴 mod 8) = 7)))
3733, 36mpbird 167 . . . . . . . . 9 (𝐴 ∈ ℤ → DECID (𝐴 mod 8) ∈ {1, 7})
38373ad2ant1 1018 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → DECID (𝐴 mod 8) ∈ {1, 7})
3938ad2antrr 488 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ 𝑀 = 2) → DECID (𝐴 mod 8) ∈ {1, 7})
4017, 19, 39ifcldcd 3571 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ 𝑀 = 2) → if((𝐴 mod 8) ∈ {1, 7}, 1, -1) ∈ ℤ)
41 2nn 9080 . . . . . . . 8 2 ∈ ℕ
4241a1i 9 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ 𝑀 = 2) → 2 ∈ ℕ)
43 simpll1 1036 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ 𝑀 = 2) → 𝐴 ∈ ℤ)
44 dvdsdc 11805 . . . . . . 7 ((2 ∈ ℕ ∧ 𝐴 ∈ ℤ) → DECID 2 ∥ 𝐴)
4542, 43, 44syl2anc 411 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ 𝑀 = 2) → DECID 2 ∥ 𝐴)
4616, 40, 45ifcldcd 3571 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ 𝑀 = 2) → if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) ∈ ℤ)
47 simpll1 1036 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ ¬ 𝑀 = 2) → 𝐴 ∈ ℤ)
48 simpr 110 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ ¬ 𝑀 = 2) → ¬ 𝑀 = 2)
49 prm2orodd 12126 . . . . . . . . . . . . . 14 (𝑀 ∈ ℙ → (𝑀 = 2 ∨ ¬ 2 ∥ 𝑀))
5049orcomd 729 . . . . . . . . . . . . 13 (𝑀 ∈ ℙ → (¬ 2 ∥ 𝑀𝑀 = 2))
5150ad2antlr 489 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ ¬ 𝑀 = 2) → (¬ 2 ∥ 𝑀𝑀 = 2))
5248, 51ecased 1349 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ ¬ 𝑀 = 2) → ¬ 2 ∥ 𝑀)
5315ad2antrr 488 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ ¬ 𝑀 = 2) → 𝑀 ∈ ℕ)
5453nnnn0d 9229 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ ¬ 𝑀 = 2) → 𝑀 ∈ ℕ0)
55 nn0oddm1d2 11914 . . . . . . . . . . . 12 (𝑀 ∈ ℕ0 → (¬ 2 ∥ 𝑀 ↔ ((𝑀 − 1) / 2) ∈ ℕ0))
5654, 55syl 14 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ ¬ 𝑀 = 2) → (¬ 2 ∥ 𝑀 ↔ ((𝑀 − 1) / 2) ∈ ℕ0))
5752, 56mpbid 147 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ ¬ 𝑀 = 2) → ((𝑀 − 1) / 2) ∈ ℕ0)
58 zexpcl 10535 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ ((𝑀 − 1) / 2) ∈ ℕ0) → (𝐴↑((𝑀 − 1) / 2)) ∈ ℤ)
5947, 57, 58syl2anc 411 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ ¬ 𝑀 = 2) → (𝐴↑((𝑀 − 1) / 2)) ∈ ℤ)
6059peano2zd 9378 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ ¬ 𝑀 = 2) → ((𝐴↑((𝑀 − 1) / 2)) + 1) ∈ ℤ)
6160, 53zmodcld 10345 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ ¬ 𝑀 = 2) → (((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) ∈ ℕ0)
6261nn0zd 9373 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ ¬ 𝑀 = 2) → (((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) ∈ ℤ)
63 1zzd 9280 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ ¬ 𝑀 = 2) → 1 ∈ ℤ)
6462, 63zsubcld 9380 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) ∧ ¬ 𝑀 = 2) → ((((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) − 1) ∈ ℤ)
65 simpl3 1002 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) → 𝑀 ∈ ℕ)
6665nnzd 9374 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) → 𝑀 ∈ ℤ)
67 2z 9281 . . . . . 6 2 ∈ ℤ
68 zdceq 9328 . . . . . 6 ((𝑀 ∈ ℤ ∧ 2 ∈ ℤ) → DECID 𝑀 = 2)
6966, 67, 68sylancl 413 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) → DECID 𝑀 = 2)
7046, 64, 69ifcldadc 3564 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) → if(𝑀 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) − 1)) ∈ ℤ)
71 simpr 110 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) → 𝑀 ∈ ℙ)
72 simpl2 1001 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) → 𝑁 ∈ ℕ)
7371, 72pccld 12300 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) → (𝑀 pCnt 𝑁) ∈ ℕ0)
74 zexpcl 10535 . . . 4 ((if(𝑀 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) − 1)) ∈ ℤ ∧ (𝑀 pCnt 𝑁) ∈ ℕ0) → (if(𝑀 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) − 1))↑(𝑀 pCnt 𝑁)) ∈ ℤ)
7570, 73, 74syl2anc 411 . . 3 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑀 ∈ ℙ) → (if(𝑀 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) − 1))↑(𝑀 pCnt 𝑁)) ∈ ℤ)
76 1zzd 9280 . . 3 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ ¬ 𝑀 ∈ ℙ) → 1 ∈ ℤ)
77 prmdc 12130 . . . 4 (𝑀 ∈ ℕ → DECID 𝑀 ∈ ℙ)
7815, 77syl 14 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → DECID 𝑀 ∈ ℙ)
7975, 76, 78ifcldadc 3564 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → if(𝑀 ∈ ℙ, (if(𝑀 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) − 1))↑(𝑀 pCnt 𝑁)), 1) ∈ ℤ)
801, 14, 15, 79fvmptd3 5610 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝐹𝑀) = if(𝑀 ∈ ℙ, (if(𝑀 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) − 1))↑(𝑀 pCnt 𝑁)), 1))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708  DECID wdc 834  w3a 978   = wceq 1353  wcel 2148  ifcif 3535  {cpr 3594   class class class wbr 4004  cmpt 4065  cfv 5217  (class class class)co 5875  0cc0 7811  1c1 7812   + caddc 7814  cmin 8128  -cneg 8129   / cdiv 8629  cn 8919  2c2 8970  7c7 8975  8c8 8976  0cn0 9176  cz 9253   mod cmo 10322  cexp 10519  cdvds 11794  cprime 12107   pCnt cpc 12284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929  ax-arch 7930  ax-caucvg 7931
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-xor 1376  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-isom 5226  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-frec 6392  df-1o 6417  df-2o 6418  df-er 6535  df-en 6741  df-fin 6743  df-sup 6983  df-inf 6984  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-2 8978  df-3 8979  df-4 8980  df-5 8981  df-6 8982  df-7 8983  df-8 8984  df-n0 9177  df-z 9254  df-uz 9529  df-q 9620  df-rp 9654  df-fz 10009  df-fzo 10143  df-fl 10270  df-mod 10323  df-seqfrec 10446  df-exp 10520  df-cj 10851  df-re 10852  df-im 10853  df-rsqrt 11007  df-abs 11008  df-dvds 11795  df-gcd 11944  df-prm 12108  df-pc 12285
This theorem is referenced by:  lgsval2lem  14414
  Copyright terms: Public domain W3C validator