| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lcmmndc | GIF version | ||
| Description: Decidablity lemma used in various proofs related to lcm. (Contributed by Jim Kingdon, 21-Jan-2022.) |
| Ref | Expression |
|---|---|
| lcmmndc | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (𝑀 = 0 ∨ 𝑁 = 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z 9403 | . . . 4 ⊢ 0 ∈ ℤ | |
| 2 | zdceq 9468 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑀 = 0) | |
| 3 | 1, 2 | mpan2 425 | . . 3 ⊢ (𝑀 ∈ ℤ → DECID 𝑀 = 0) |
| 4 | 3 | adantr 276 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑀 = 0) |
| 5 | zdceq 9468 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0) | |
| 6 | 1, 5 | mpan2 425 | . . 3 ⊢ (𝑁 ∈ ℤ → DECID 𝑁 = 0) |
| 7 | 6 | adantl 277 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑁 = 0) |
| 8 | dcor 938 | . 2 ⊢ (DECID 𝑀 = 0 → (DECID 𝑁 = 0 → DECID (𝑀 = 0 ∨ 𝑁 = 0))) | |
| 9 | 4, 7, 8 | sylc 62 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (𝑀 = 0 ∨ 𝑁 = 0)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 710 DECID wdc 836 = wceq 1373 ∈ wcel 2177 0cc0 7945 ℤcz 9392 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-0id 8053 ax-rnegex 8054 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-ltadd 8061 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-iota 5241 df-fun 5282 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-inn 9057 df-n0 9316 df-z 9393 |
| This theorem is referenced by: lcmval 12460 dvdslcm 12466 lcmeq0 12468 lcmcl 12469 lcmneg 12471 lcmgcd 12475 lcmdvds 12476 |
| Copyright terms: Public domain | W3C validator |