ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eufnfv GIF version

Theorem eufnfv 5789
Description: A function is uniquely determined by its values. (Contributed by NM, 31-Aug-2011.)
Hypotheses
Ref Expression
eufnfv.1 𝐴 ∈ V
eufnfv.2 𝐵 ∈ V
Assertion
Ref Expression
eufnfv ∃!𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵)
Distinct variable groups:   𝑥,𝑓,𝐴   𝐵,𝑓
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem eufnfv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eufnfv.1 . . . . 5 𝐴 ∈ V
21mptex 5784 . . . 4 (𝑥𝐴𝐵) ∈ V
3 eqeq2 2203 . . . . . 6 (𝑦 = (𝑥𝐴𝐵) → (𝑓 = 𝑦𝑓 = (𝑥𝐴𝐵)))
43bibi2d 232 . . . . 5 (𝑦 = (𝑥𝐴𝐵) → (((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵) ↔ 𝑓 = 𝑦) ↔ ((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵) ↔ 𝑓 = (𝑥𝐴𝐵))))
54albidv 1835 . . . 4 (𝑦 = (𝑥𝐴𝐵) → (∀𝑓((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵) ↔ 𝑓 = 𝑦) ↔ ∀𝑓((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵) ↔ 𝑓 = (𝑥𝐴𝐵))))
62, 5spcev 2855 . . 3 (∀𝑓((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵) ↔ 𝑓 = (𝑥𝐴𝐵)) → ∃𝑦𝑓((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵) ↔ 𝑓 = 𝑦))
7 eufnfv.2 . . . . . . 7 𝐵 ∈ V
8 eqid 2193 . . . . . . 7 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
97, 8fnmpti 5382 . . . . . 6 (𝑥𝐴𝐵) Fn 𝐴
10 fneq1 5342 . . . . . 6 (𝑓 = (𝑥𝐴𝐵) → (𝑓 Fn 𝐴 ↔ (𝑥𝐴𝐵) Fn 𝐴))
119, 10mpbiri 168 . . . . 5 (𝑓 = (𝑥𝐴𝐵) → 𝑓 Fn 𝐴)
1211pm4.71ri 392 . . . 4 (𝑓 = (𝑥𝐴𝐵) ↔ (𝑓 Fn 𝐴𝑓 = (𝑥𝐴𝐵)))
13 dffn5im 5602 . . . . . . 7 (𝑓 Fn 𝐴𝑓 = (𝑥𝐴 ↦ (𝑓𝑥)))
1413eqeq1d 2202 . . . . . 6 (𝑓 Fn 𝐴 → (𝑓 = (𝑥𝐴𝐵) ↔ (𝑥𝐴 ↦ (𝑓𝑥)) = (𝑥𝐴𝐵)))
15 funfvex 5571 . . . . . . . . 9 ((Fun 𝑓𝑥 ∈ dom 𝑓) → (𝑓𝑥) ∈ V)
1615funfni 5354 . . . . . . . 8 ((𝑓 Fn 𝐴𝑥𝐴) → (𝑓𝑥) ∈ V)
1716ralrimiva 2567 . . . . . . 7 (𝑓 Fn 𝐴 → ∀𝑥𝐴 (𝑓𝑥) ∈ V)
18 mpteqb 5648 . . . . . . 7 (∀𝑥𝐴 (𝑓𝑥) ∈ V → ((𝑥𝐴 ↦ (𝑓𝑥)) = (𝑥𝐴𝐵) ↔ ∀𝑥𝐴 (𝑓𝑥) = 𝐵))
1917, 18syl 14 . . . . . 6 (𝑓 Fn 𝐴 → ((𝑥𝐴 ↦ (𝑓𝑥)) = (𝑥𝐴𝐵) ↔ ∀𝑥𝐴 (𝑓𝑥) = 𝐵))
2014, 19bitrd 188 . . . . 5 (𝑓 Fn 𝐴 → (𝑓 = (𝑥𝐴𝐵) ↔ ∀𝑥𝐴 (𝑓𝑥) = 𝐵))
2120pm5.32i 454 . . . 4 ((𝑓 Fn 𝐴𝑓 = (𝑥𝐴𝐵)) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵))
2212, 21bitr2i 185 . . 3 ((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵) ↔ 𝑓 = (𝑥𝐴𝐵))
236, 22mpg 1462 . 2 𝑦𝑓((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵) ↔ 𝑓 = 𝑦)
24 df-eu 2045 . 2 (∃!𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵) ↔ ∃𝑦𝑓((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵) ↔ 𝑓 = 𝑦))
2523, 24mpbir 146 1 ∃!𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wal 1362   = wceq 1364  wex 1503  ∃!weu 2042  wcel 2164  wral 2472  Vcvv 2760  cmpt 4090   Fn wfn 5249  cfv 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator