| Step | Hyp | Ref
 | Expression | 
| 1 |   | eufnfv.1 | 
. . . . 5
⊢ 𝐴 ∈ V | 
| 2 | 1 | mptex 5788 | 
. . . 4
⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V | 
| 3 |   | eqeq2 2206 | 
. . . . . 6
⊢ (𝑦 = (𝑥 ∈ 𝐴 ↦ 𝐵) → (𝑓 = 𝑦 ↔ 𝑓 = (𝑥 ∈ 𝐴 ↦ 𝐵))) | 
| 4 | 3 | bibi2d 232 | 
. . . . 5
⊢ (𝑦 = (𝑥 ∈ 𝐴 ↦ 𝐵) → (((𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 𝐵) ↔ 𝑓 = 𝑦) ↔ ((𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 𝐵) ↔ 𝑓 = (𝑥 ∈ 𝐴 ↦ 𝐵)))) | 
| 5 | 4 | albidv 1838 | 
. . . 4
⊢ (𝑦 = (𝑥 ∈ 𝐴 ↦ 𝐵) → (∀𝑓((𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 𝐵) ↔ 𝑓 = 𝑦) ↔ ∀𝑓((𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 𝐵) ↔ 𝑓 = (𝑥 ∈ 𝐴 ↦ 𝐵)))) | 
| 6 | 2, 5 | spcev 2859 | 
. . 3
⊢
(∀𝑓((𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 𝐵) ↔ 𝑓 = (𝑥 ∈ 𝐴 ↦ 𝐵)) → ∃𝑦∀𝑓((𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 𝐵) ↔ 𝑓 = 𝑦)) | 
| 7 |   | eufnfv.2 | 
. . . . . . 7
⊢ 𝐵 ∈ V | 
| 8 |   | eqid 2196 | 
. . . . . . 7
⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | 
| 9 | 7, 8 | fnmpti 5386 | 
. . . . . 6
⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴 | 
| 10 |   | fneq1 5346 | 
. . . . . 6
⊢ (𝑓 = (𝑥 ∈ 𝐴 ↦ 𝐵) → (𝑓 Fn 𝐴 ↔ (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴)) | 
| 11 | 9, 10 | mpbiri 168 | 
. . . . 5
⊢ (𝑓 = (𝑥 ∈ 𝐴 ↦ 𝐵) → 𝑓 Fn 𝐴) | 
| 12 | 11 | pm4.71ri 392 | 
. . . 4
⊢ (𝑓 = (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ (𝑓 Fn 𝐴 ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ 𝐵))) | 
| 13 |   | dffn5im 5606 | 
. . . . . . 7
⊢ (𝑓 Fn 𝐴 → 𝑓 = (𝑥 ∈ 𝐴 ↦ (𝑓‘𝑥))) | 
| 14 | 13 | eqeq1d 2205 | 
. . . . . 6
⊢ (𝑓 Fn 𝐴 → (𝑓 = (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ (𝑥 ∈ 𝐴 ↦ (𝑓‘𝑥)) = (𝑥 ∈ 𝐴 ↦ 𝐵))) | 
| 15 |   | funfvex 5575 | 
. . . . . . . . 9
⊢ ((Fun
𝑓 ∧ 𝑥 ∈ dom 𝑓) → (𝑓‘𝑥) ∈ V) | 
| 16 | 15 | funfni 5358 | 
. . . . . . . 8
⊢ ((𝑓 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓‘𝑥) ∈ V) | 
| 17 | 16 | ralrimiva 2570 | 
. . . . . . 7
⊢ (𝑓 Fn 𝐴 → ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ V) | 
| 18 |   | mpteqb 5652 | 
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 (𝑓‘𝑥) ∈ V → ((𝑥 ∈ 𝐴 ↦ (𝑓‘𝑥)) = (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 𝐵)) | 
| 19 | 17, 18 | syl 14 | 
. . . . . 6
⊢ (𝑓 Fn 𝐴 → ((𝑥 ∈ 𝐴 ↦ (𝑓‘𝑥)) = (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 𝐵)) | 
| 20 | 14, 19 | bitrd 188 | 
. . . . 5
⊢ (𝑓 Fn 𝐴 → (𝑓 = (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 𝐵)) | 
| 21 | 20 | pm5.32i 454 | 
. . . 4
⊢ ((𝑓 Fn 𝐴 ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ 𝐵)) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 𝐵)) | 
| 22 | 12, 21 | bitr2i 185 | 
. . 3
⊢ ((𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 𝐵) ↔ 𝑓 = (𝑥 ∈ 𝐴 ↦ 𝐵)) | 
| 23 | 6, 22 | mpg 1465 | 
. 2
⊢
∃𝑦∀𝑓((𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 𝐵) ↔ 𝑓 = 𝑦) | 
| 24 |   | df-eu 2048 | 
. 2
⊢
(∃!𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 𝐵) ↔ ∃𝑦∀𝑓((𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 𝐵) ↔ 𝑓 = 𝑦)) | 
| 25 | 23, 24 | mpbir 146 | 
1
⊢
∃!𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 𝐵) |