ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eufnfv GIF version

Theorem eufnfv 5828
Description: A function is uniquely determined by its values. (Contributed by NM, 31-Aug-2011.)
Hypotheses
Ref Expression
eufnfv.1 𝐴 ∈ V
eufnfv.2 𝐵 ∈ V
Assertion
Ref Expression
eufnfv ∃!𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵)
Distinct variable groups:   𝑥,𝑓,𝐴   𝐵,𝑓
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem eufnfv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eufnfv.1 . . . . 5 𝐴 ∈ V
21mptex 5823 . . . 4 (𝑥𝐴𝐵) ∈ V
3 eqeq2 2216 . . . . . 6 (𝑦 = (𝑥𝐴𝐵) → (𝑓 = 𝑦𝑓 = (𝑥𝐴𝐵)))
43bibi2d 232 . . . . 5 (𝑦 = (𝑥𝐴𝐵) → (((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵) ↔ 𝑓 = 𝑦) ↔ ((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵) ↔ 𝑓 = (𝑥𝐴𝐵))))
54albidv 1848 . . . 4 (𝑦 = (𝑥𝐴𝐵) → (∀𝑓((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵) ↔ 𝑓 = 𝑦) ↔ ∀𝑓((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵) ↔ 𝑓 = (𝑥𝐴𝐵))))
62, 5spcev 2872 . . 3 (∀𝑓((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵) ↔ 𝑓 = (𝑥𝐴𝐵)) → ∃𝑦𝑓((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵) ↔ 𝑓 = 𝑦))
7 eufnfv.2 . . . . . . 7 𝐵 ∈ V
8 eqid 2206 . . . . . . 7 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
97, 8fnmpti 5414 . . . . . 6 (𝑥𝐴𝐵) Fn 𝐴
10 fneq1 5371 . . . . . 6 (𝑓 = (𝑥𝐴𝐵) → (𝑓 Fn 𝐴 ↔ (𝑥𝐴𝐵) Fn 𝐴))
119, 10mpbiri 168 . . . . 5 (𝑓 = (𝑥𝐴𝐵) → 𝑓 Fn 𝐴)
1211pm4.71ri 392 . . . 4 (𝑓 = (𝑥𝐴𝐵) ↔ (𝑓 Fn 𝐴𝑓 = (𝑥𝐴𝐵)))
13 dffn5im 5637 . . . . . . 7 (𝑓 Fn 𝐴𝑓 = (𝑥𝐴 ↦ (𝑓𝑥)))
1413eqeq1d 2215 . . . . . 6 (𝑓 Fn 𝐴 → (𝑓 = (𝑥𝐴𝐵) ↔ (𝑥𝐴 ↦ (𝑓𝑥)) = (𝑥𝐴𝐵)))
15 funfvex 5606 . . . . . . . . 9 ((Fun 𝑓𝑥 ∈ dom 𝑓) → (𝑓𝑥) ∈ V)
1615funfni 5385 . . . . . . . 8 ((𝑓 Fn 𝐴𝑥𝐴) → (𝑓𝑥) ∈ V)
1716ralrimiva 2580 . . . . . . 7 (𝑓 Fn 𝐴 → ∀𝑥𝐴 (𝑓𝑥) ∈ V)
18 mpteqb 5683 . . . . . . 7 (∀𝑥𝐴 (𝑓𝑥) ∈ V → ((𝑥𝐴 ↦ (𝑓𝑥)) = (𝑥𝐴𝐵) ↔ ∀𝑥𝐴 (𝑓𝑥) = 𝐵))
1917, 18syl 14 . . . . . 6 (𝑓 Fn 𝐴 → ((𝑥𝐴 ↦ (𝑓𝑥)) = (𝑥𝐴𝐵) ↔ ∀𝑥𝐴 (𝑓𝑥) = 𝐵))
2014, 19bitrd 188 . . . . 5 (𝑓 Fn 𝐴 → (𝑓 = (𝑥𝐴𝐵) ↔ ∀𝑥𝐴 (𝑓𝑥) = 𝐵))
2120pm5.32i 454 . . . 4 ((𝑓 Fn 𝐴𝑓 = (𝑥𝐴𝐵)) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵))
2212, 21bitr2i 185 . . 3 ((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵) ↔ 𝑓 = (𝑥𝐴𝐵))
236, 22mpg 1475 . 2 𝑦𝑓((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵) ↔ 𝑓 = 𝑦)
24 df-eu 2058 . 2 (∃!𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵) ↔ ∃𝑦𝑓((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵) ↔ 𝑓 = 𝑦))
2523, 24mpbir 146 1 ∃!𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wal 1371   = wceq 1373  wex 1516  ∃!weu 2055  wcel 2177  wral 2485  Vcvv 2773  cmpt 4113   Fn wfn 5275  cfv 5280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator