Step | Hyp | Ref
| Expression |
1 | | eufnfv.1 |
. . . . 5
⊢ 𝐴 ∈ V |
2 | 1 | mptex 5722 |
. . . 4
⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V |
3 | | eqeq2 2180 |
. . . . . 6
⊢ (𝑦 = (𝑥 ∈ 𝐴 ↦ 𝐵) → (𝑓 = 𝑦 ↔ 𝑓 = (𝑥 ∈ 𝐴 ↦ 𝐵))) |
4 | 3 | bibi2d 231 |
. . . . 5
⊢ (𝑦 = (𝑥 ∈ 𝐴 ↦ 𝐵) → (((𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 𝐵) ↔ 𝑓 = 𝑦) ↔ ((𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 𝐵) ↔ 𝑓 = (𝑥 ∈ 𝐴 ↦ 𝐵)))) |
5 | 4 | albidv 1817 |
. . . 4
⊢ (𝑦 = (𝑥 ∈ 𝐴 ↦ 𝐵) → (∀𝑓((𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 𝐵) ↔ 𝑓 = 𝑦) ↔ ∀𝑓((𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 𝐵) ↔ 𝑓 = (𝑥 ∈ 𝐴 ↦ 𝐵)))) |
6 | 2, 5 | spcev 2825 |
. . 3
⊢
(∀𝑓((𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 𝐵) ↔ 𝑓 = (𝑥 ∈ 𝐴 ↦ 𝐵)) → ∃𝑦∀𝑓((𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 𝐵) ↔ 𝑓 = 𝑦)) |
7 | | eufnfv.2 |
. . . . . . 7
⊢ 𝐵 ∈ V |
8 | | eqid 2170 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) |
9 | 7, 8 | fnmpti 5326 |
. . . . . 6
⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴 |
10 | | fneq1 5286 |
. . . . . 6
⊢ (𝑓 = (𝑥 ∈ 𝐴 ↦ 𝐵) → (𝑓 Fn 𝐴 ↔ (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴)) |
11 | 9, 10 | mpbiri 167 |
. . . . 5
⊢ (𝑓 = (𝑥 ∈ 𝐴 ↦ 𝐵) → 𝑓 Fn 𝐴) |
12 | 11 | pm4.71ri 390 |
. . . 4
⊢ (𝑓 = (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ (𝑓 Fn 𝐴 ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ 𝐵))) |
13 | | dffn5im 5542 |
. . . . . . 7
⊢ (𝑓 Fn 𝐴 → 𝑓 = (𝑥 ∈ 𝐴 ↦ (𝑓‘𝑥))) |
14 | 13 | eqeq1d 2179 |
. . . . . 6
⊢ (𝑓 Fn 𝐴 → (𝑓 = (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ (𝑥 ∈ 𝐴 ↦ (𝑓‘𝑥)) = (𝑥 ∈ 𝐴 ↦ 𝐵))) |
15 | | funfvex 5513 |
. . . . . . . . 9
⊢ ((Fun
𝑓 ∧ 𝑥 ∈ dom 𝑓) → (𝑓‘𝑥) ∈ V) |
16 | 15 | funfni 5298 |
. . . . . . . 8
⊢ ((𝑓 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓‘𝑥) ∈ V) |
17 | 16 | ralrimiva 2543 |
. . . . . . 7
⊢ (𝑓 Fn 𝐴 → ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ V) |
18 | | mpteqb 5586 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 (𝑓‘𝑥) ∈ V → ((𝑥 ∈ 𝐴 ↦ (𝑓‘𝑥)) = (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 𝐵)) |
19 | 17, 18 | syl 14 |
. . . . . 6
⊢ (𝑓 Fn 𝐴 → ((𝑥 ∈ 𝐴 ↦ (𝑓‘𝑥)) = (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 𝐵)) |
20 | 14, 19 | bitrd 187 |
. . . . 5
⊢ (𝑓 Fn 𝐴 → (𝑓 = (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 𝐵)) |
21 | 20 | pm5.32i 451 |
. . . 4
⊢ ((𝑓 Fn 𝐴 ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ 𝐵)) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 𝐵)) |
22 | 12, 21 | bitr2i 184 |
. . 3
⊢ ((𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 𝐵) ↔ 𝑓 = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
23 | 6, 22 | mpg 1444 |
. 2
⊢
∃𝑦∀𝑓((𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 𝐵) ↔ 𝑓 = 𝑦) |
24 | | df-eu 2022 |
. 2
⊢
(∃!𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 𝐵) ↔ ∃𝑦∀𝑓((𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 𝐵) ↔ 𝑓 = 𝑦)) |
25 | 23, 24 | mpbir 145 |
1
⊢
∃!𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 𝐵) |