![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dmeqi | GIF version |
Description: Equality inference for domain. (Contributed by NM, 4-Mar-2004.) |
Ref | Expression |
---|---|
dmeqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
dmeqi | ⊢ dom 𝐴 = dom 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmeqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | dmeq 4862 | . 2 ⊢ (𝐴 = 𝐵 → dom 𝐴 = dom 𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ dom 𝐴 = dom 𝐵 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 dom cdm 4659 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-dm 4669 |
This theorem is referenced by: dmxpm 4882 dmxpid 4883 dmxpin 4884 rncoss 4932 rncoeq 4935 rnun 5074 rnin 5075 rnxpm 5095 rnxpss 5097 imainrect 5111 dmpropg 5138 dmtpop 5141 rnsnopg 5144 fntpg 5310 fnreseql 5668 dmoprab 5999 reldmmpo 6030 elmpocl 6113 tfrlem8 6371 tfr2a 6374 tfrlemi14d 6386 tfr1onlemres 6402 tfri1dALT 6404 tfrcllemres 6415 xpassen 6884 sbthlemi5 7020 casedm 7145 djudm 7164 ctssdccl 7170 dmaddpi 7385 dmmulpi 7386 dmaddpq 7439 dmmulpq 7440 axaddf 7928 axmulf 7929 ennnfonelemom 12565 ennnfonelemdm 12577 |
Copyright terms: Public domain | W3C validator |