![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dmeqi | GIF version |
Description: Equality inference for domain. (Contributed by NM, 4-Mar-2004.) |
Ref | Expression |
---|---|
dmeqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
dmeqi | ⊢ dom 𝐴 = dom 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmeqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | dmeq 4829 | . 2 ⊢ (𝐴 = 𝐵 → dom 𝐴 = dom 𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ dom 𝐴 = dom 𝐵 |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 dom cdm 4628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-sn 3600 df-pr 3601 df-op 3603 df-br 4006 df-dm 4638 |
This theorem is referenced by: dmxpm 4849 dmxpid 4850 dmxpin 4851 rncoss 4899 rncoeq 4902 rnun 5039 rnin 5040 rnxpm 5060 rnxpss 5062 imainrect 5076 dmpropg 5103 dmtpop 5106 rnsnopg 5109 fntpg 5274 fnreseql 5629 dmoprab 5959 reldmmpo 5989 elmpocl 6072 tfrlem8 6322 tfr2a 6325 tfrlemi14d 6337 tfr1onlemres 6353 tfri1dALT 6355 tfrcllemres 6366 xpassen 6833 sbthlemi5 6963 casedm 7088 djudm 7107 ctssdccl 7113 dmaddpi 7327 dmmulpi 7328 dmaddpq 7381 dmmulpq 7382 axaddf 7870 axmulf 7871 ennnfonelemom 12412 ennnfonelemdm 12424 |
Copyright terms: Public domain | W3C validator |