| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmeqi | GIF version | ||
| Description: Equality inference for domain. (Contributed by NM, 4-Mar-2004.) |
| Ref | Expression |
|---|---|
| dmeqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| dmeqi | ⊢ dom 𝐴 = dom 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmeqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | dmeq 4922 | . 2 ⊢ (𝐴 = 𝐵 → dom 𝐴 = dom 𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ dom 𝐴 = dom 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 dom cdm 4718 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-dm 4728 |
| This theorem is referenced by: dmxpm 4943 dmxpid 4944 dmxpin 4945 rncoss 4994 rncoeq 4997 rnun 5136 rnin 5137 rnxpm 5157 rnxpss 5159 imainrect 5173 dmpropg 5200 dmtpop 5203 rnsnopg 5206 fntpg 5376 fnreseql 5744 dmoprab 6084 reldmmpo 6115 elmpocl 6199 tfrlem8 6462 tfr2a 6465 tfrlemi14d 6477 tfr1onlemres 6493 tfri1dALT 6495 tfrcllemres 6506 xpassen 6985 sbthlemi5 7124 casedm 7249 djudm 7268 ctssdccl 7274 dmaddpi 7508 dmmulpi 7509 dmaddpq 7562 dmmulpq 7563 axaddf 8051 axmulf 8052 ennnfonelemom 12974 ennnfonelemdm 12986 structiedg0val 15835 isuhgrm 15865 isushgrm 15866 isupgren 15889 isumgren 15899 isuspgren 15949 isusgren 15950 ushgredgedg 16018 ushgredgedgloop 16020 |
| Copyright terms: Public domain | W3C validator |