| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmeqi | GIF version | ||
| Description: Equality inference for domain. (Contributed by NM, 4-Mar-2004.) |
| Ref | Expression |
|---|---|
| dmeqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| dmeqi | ⊢ dom 𝐴 = dom 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmeqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | dmeq 4877 | . 2 ⊢ (𝐴 = 𝐵 → dom 𝐴 = dom 𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ dom 𝐴 = dom 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 dom cdm 4674 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-dm 4684 |
| This theorem is referenced by: dmxpm 4897 dmxpid 4898 dmxpin 4899 rncoss 4948 rncoeq 4951 rnun 5090 rnin 5091 rnxpm 5111 rnxpss 5113 imainrect 5127 dmpropg 5154 dmtpop 5157 rnsnopg 5160 fntpg 5329 fnreseql 5689 dmoprab 6025 reldmmpo 6056 elmpocl 6140 tfrlem8 6403 tfr2a 6406 tfrlemi14d 6418 tfr1onlemres 6434 tfri1dALT 6436 tfrcllemres 6447 xpassen 6924 sbthlemi5 7062 casedm 7187 djudm 7206 ctssdccl 7212 dmaddpi 7437 dmmulpi 7438 dmaddpq 7491 dmmulpq 7492 axaddf 7980 axmulf 7981 ennnfonelemom 12721 ennnfonelemdm 12733 structiedg0val 15579 |
| Copyright terms: Public domain | W3C validator |