Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dmeqi | GIF version |
Description: Equality inference for domain. (Contributed by NM, 4-Mar-2004.) |
Ref | Expression |
---|---|
dmeqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
dmeqi | ⊢ dom 𝐴 = dom 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmeqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | dmeq 4811 | . 2 ⊢ (𝐴 = 𝐵 → dom 𝐴 = dom 𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ dom 𝐴 = dom 𝐵 |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 dom cdm 4611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-dm 4621 |
This theorem is referenced by: dmxpm 4831 dmxpid 4832 dmxpin 4833 rncoss 4881 rncoeq 4884 rnun 5019 rnin 5020 rnxpm 5040 rnxpss 5042 imainrect 5056 dmpropg 5083 dmtpop 5086 rnsnopg 5089 fntpg 5254 fnreseql 5606 dmoprab 5934 reldmmpo 5964 elmpocl 6047 tfrlem8 6297 tfr2a 6300 tfrlemi14d 6312 tfr1onlemres 6328 tfri1dALT 6330 tfrcllemres 6341 xpassen 6808 sbthlemi5 6938 casedm 7063 djudm 7082 ctssdccl 7088 dmaddpi 7287 dmmulpi 7288 dmaddpq 7341 dmmulpq 7342 axaddf 7830 axmulf 7831 ennnfonelemom 12363 ennnfonelemdm 12375 |
Copyright terms: Public domain | W3C validator |