| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > dmeqi | GIF version | ||
| Description: Equality inference for domain. (Contributed by NM, 4-Mar-2004.) | 
| Ref | Expression | 
|---|---|
| dmeqi.1 | ⊢ 𝐴 = 𝐵 | 
| Ref | Expression | 
|---|---|
| dmeqi | ⊢ dom 𝐴 = dom 𝐵 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dmeqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | dmeq 4866 | . 2 ⊢ (𝐴 = 𝐵 → dom 𝐴 = dom 𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ dom 𝐴 = dom 𝐵 | 
| Colors of variables: wff set class | 
| Syntax hints: = wceq 1364 dom cdm 4663 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-dm 4673 | 
| This theorem is referenced by: dmxpm 4886 dmxpid 4887 dmxpin 4888 rncoss 4936 rncoeq 4939 rnun 5078 rnin 5079 rnxpm 5099 rnxpss 5101 imainrect 5115 dmpropg 5142 dmtpop 5145 rnsnopg 5148 fntpg 5314 fnreseql 5672 dmoprab 6003 reldmmpo 6034 elmpocl 6118 tfrlem8 6376 tfr2a 6379 tfrlemi14d 6391 tfr1onlemres 6407 tfri1dALT 6409 tfrcllemres 6420 xpassen 6889 sbthlemi5 7027 casedm 7152 djudm 7171 ctssdccl 7177 dmaddpi 7392 dmmulpi 7393 dmaddpq 7446 dmmulpq 7447 axaddf 7935 axmulf 7936 ennnfonelemom 12625 ennnfonelemdm 12637 | 
| Copyright terms: Public domain | W3C validator |