| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmeqi | GIF version | ||
| Description: Equality inference for domain. (Contributed by NM, 4-Mar-2004.) |
| Ref | Expression |
|---|---|
| dmeqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| dmeqi | ⊢ dom 𝐴 = dom 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmeqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | dmeq 4887 | . 2 ⊢ (𝐴 = 𝐵 → dom 𝐴 = dom 𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ dom 𝐴 = dom 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 dom cdm 4683 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3644 df-pr 3645 df-op 3647 df-br 4052 df-dm 4693 |
| This theorem is referenced by: dmxpm 4907 dmxpid 4908 dmxpin 4909 rncoss 4958 rncoeq 4961 rnun 5100 rnin 5101 rnxpm 5121 rnxpss 5123 imainrect 5137 dmpropg 5164 dmtpop 5167 rnsnopg 5170 fntpg 5339 fnreseql 5703 dmoprab 6039 reldmmpo 6070 elmpocl 6154 tfrlem8 6417 tfr2a 6420 tfrlemi14d 6432 tfr1onlemres 6448 tfri1dALT 6450 tfrcllemres 6461 xpassen 6940 sbthlemi5 7078 casedm 7203 djudm 7222 ctssdccl 7228 dmaddpi 7458 dmmulpi 7459 dmaddpq 7512 dmmulpq 7513 axaddf 8001 axmulf 8002 ennnfonelemom 12854 ennnfonelemdm 12866 structiedg0val 15714 isuhgrm 15742 isushgrm 15743 isupgren 15766 isumgren 15776 |
| Copyright terms: Public domain | W3C validator |