![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dmeqi | GIF version |
Description: Equality inference for domain. (Contributed by NM, 4-Mar-2004.) |
Ref | Expression |
---|---|
dmeqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
dmeqi | ⊢ dom 𝐴 = dom 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmeqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | dmeq 4863 | . 2 ⊢ (𝐴 = 𝐵 → dom 𝐴 = dom 𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ dom 𝐴 = dom 𝐵 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 dom cdm 4660 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-dm 4670 |
This theorem is referenced by: dmxpm 4883 dmxpid 4884 dmxpin 4885 rncoss 4933 rncoeq 4936 rnun 5075 rnin 5076 rnxpm 5096 rnxpss 5098 imainrect 5112 dmpropg 5139 dmtpop 5142 rnsnopg 5145 fntpg 5311 fnreseql 5669 dmoprab 6000 reldmmpo 6031 elmpocl 6115 tfrlem8 6373 tfr2a 6376 tfrlemi14d 6388 tfr1onlemres 6404 tfri1dALT 6406 tfrcllemres 6417 xpassen 6886 sbthlemi5 7022 casedm 7147 djudm 7166 ctssdccl 7172 dmaddpi 7387 dmmulpi 7388 dmaddpq 7441 dmmulpq 7442 axaddf 7930 axmulf 7931 ennnfonelemom 12568 ennnfonelemdm 12580 |
Copyright terms: Public domain | W3C validator |