Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dmeqi | GIF version |
Description: Equality inference for domain. (Contributed by NM, 4-Mar-2004.) |
Ref | Expression |
---|---|
dmeqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
dmeqi | ⊢ dom 𝐴 = dom 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmeqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | dmeq 4804 | . 2 ⊢ (𝐴 = 𝐵 → dom 𝐴 = dom 𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ dom 𝐴 = dom 𝐵 |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 dom cdm 4604 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-dm 4614 |
This theorem is referenced by: dmxpm 4824 dmxpid 4825 dmxpin 4826 rncoss 4874 rncoeq 4877 rnun 5012 rnin 5013 rnxpm 5033 rnxpss 5035 imainrect 5049 dmpropg 5076 dmtpop 5079 rnsnopg 5082 fntpg 5244 fnreseql 5595 dmoprab 5923 reldmmpo 5953 elmpocl 6036 tfrlem8 6286 tfr2a 6289 tfrlemi14d 6301 tfr1onlemres 6317 tfri1dALT 6319 tfrcllemres 6330 xpassen 6796 sbthlemi5 6926 casedm 7051 djudm 7070 ctssdccl 7076 dmaddpi 7266 dmmulpi 7267 dmaddpq 7320 dmmulpq 7321 axaddf 7809 axmulf 7810 ennnfonelemom 12341 ennnfonelemdm 12353 |
Copyright terms: Public domain | W3C validator |