ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmxpss2 GIF version

Theorem dmxpss2 5076
Description: Upper bound for the domain of a binary relation. (Contributed by BJ, 10-Jul-2022.)
Assertion
Ref Expression
dmxpss2 (𝑅 ⊆ (𝐴 × 𝐵) → dom 𝑅𝐴)

Proof of Theorem dmxpss2
StepHypRef Expression
1 dmss 4841 . 2 (𝑅 ⊆ (𝐴 × 𝐵) → dom 𝑅 ⊆ dom (𝐴 × 𝐵))
2 dmxpss 5074 . 2 dom (𝐴 × 𝐵) ⊆ 𝐴
31, 2sstrdi 3182 1 (𝑅 ⊆ (𝐴 × 𝐵) → dom 𝑅𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wss 3144   × cxp 4639  dom cdm 4641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-br 4019  df-opab 4080  df-xp 4647  df-dm 4651
This theorem is referenced by:  cossxp2  5167
  Copyright terms: Public domain W3C validator