ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnxpss2 GIF version

Theorem rnxpss2 5037
Description: Upper bound for the range of a binary relation. (Contributed by BJ, 10-Jul-2022.)
Assertion
Ref Expression
rnxpss2 (𝑅 ⊆ (𝐴 × 𝐵) → ran 𝑅𝐵)

Proof of Theorem rnxpss2
StepHypRef Expression
1 rnss 4834 . 2 (𝑅 ⊆ (𝐴 × 𝐵) → ran 𝑅 ⊆ ran (𝐴 × 𝐵))
2 rnxpss 5035 . 2 ran (𝐴 × 𝐵) ⊆ 𝐵
31, 2sstrdi 3154 1 (𝑅 ⊆ (𝐴 × 𝐵) → ran 𝑅𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wss 3116   × cxp 4602  ran crn 4605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612  df-dm 4614  df-rn 4615
This theorem is referenced by:  cossxp2  5127
  Copyright terms: Public domain W3C validator