![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rnxpss | GIF version |
Description: The range of a cross product is a subclass of the second factor. (Contributed by NM, 16-Jan-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
rnxpss | ⊢ ran (𝐴 × 𝐵) ⊆ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rn 4670 | . 2 ⊢ ran (𝐴 × 𝐵) = dom ◡(𝐴 × 𝐵) | |
2 | cnvxp 5084 | . . . 4 ⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) | |
3 | 2 | dmeqi 4863 | . . 3 ⊢ dom ◡(𝐴 × 𝐵) = dom (𝐵 × 𝐴) |
4 | dmxpss 5096 | . . 3 ⊢ dom (𝐵 × 𝐴) ⊆ 𝐵 | |
5 | 3, 4 | eqsstri 3211 | . 2 ⊢ dom ◡(𝐴 × 𝐵) ⊆ 𝐵 |
6 | 1, 5 | eqsstri 3211 | 1 ⊢ ran (𝐴 × 𝐵) ⊆ 𝐵 |
Colors of variables: wff set class |
Syntax hints: ⊆ wss 3153 × cxp 4657 ◡ccnv 4658 dom cdm 4659 ran crn 4660 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-xp 4665 df-rel 4666 df-cnv 4667 df-dm 4669 df-rn 4670 |
This theorem is referenced by: rnxpss2 5099 rnxpid 5100 ssxpbm 5101 ssxp2 5103 ssrnres 5108 funssxp 5423 fconst 5449 dff2 5702 fliftf 5842 tfrcllembfn 6410 frecuzrdgtcl 10483 cnconst2 14401 lmss 14414 exmidsbthrlem 15512 |
Copyright terms: Public domain | W3C validator |