ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnxpss GIF version

Theorem rnxpss 5136
Description: The range of a cross product is a subclass of the second factor. (Contributed by NM, 16-Jan-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
rnxpss ran (𝐴 × 𝐵) ⊆ 𝐵

Proof of Theorem rnxpss
StepHypRef Expression
1 df-rn 4707 . 2 ran (𝐴 × 𝐵) = dom (𝐴 × 𝐵)
2 cnvxp 5123 . . . 4 (𝐴 × 𝐵) = (𝐵 × 𝐴)
32dmeqi 4901 . . 3 dom (𝐴 × 𝐵) = dom (𝐵 × 𝐴)
4 dmxpss 5135 . . 3 dom (𝐵 × 𝐴) ⊆ 𝐵
53, 4eqsstri 3236 . 2 dom (𝐴 × 𝐵) ⊆ 𝐵
61, 5eqsstri 3236 1 ran (𝐴 × 𝐵) ⊆ 𝐵
Colors of variables: wff set class
Syntax hints:  wss 3177   × cxp 4694  ccnv 4695  dom cdm 4696  ran crn 4697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-br 4063  df-opab 4125  df-xp 4702  df-rel 4703  df-cnv 4704  df-dm 4706  df-rn 4707
This theorem is referenced by:  rnxpss2  5138  rnxpid  5139  ssxpbm  5140  ssxp2  5142  ssrnres  5147  funssxp  5469  fconst  5497  dff2  5752  fliftf  5896  tfrcllembfn  6473  frecuzrdgtcl  10601  cnconst2  14872  lmss  14885  exmidsbthrlem  16301
  Copyright terms: Public domain W3C validator