![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rnxpss | GIF version |
Description: The range of a cross product is a subclass of the second factor. (Contributed by NM, 16-Jan-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
rnxpss | ⊢ ran (𝐴 × 𝐵) ⊆ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rn 4671 | . 2 ⊢ ran (𝐴 × 𝐵) = dom ◡(𝐴 × 𝐵) | |
2 | cnvxp 5085 | . . . 4 ⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) | |
3 | 2 | dmeqi 4864 | . . 3 ⊢ dom ◡(𝐴 × 𝐵) = dom (𝐵 × 𝐴) |
4 | dmxpss 5097 | . . 3 ⊢ dom (𝐵 × 𝐴) ⊆ 𝐵 | |
5 | 3, 4 | eqsstri 3212 | . 2 ⊢ dom ◡(𝐴 × 𝐵) ⊆ 𝐵 |
6 | 1, 5 | eqsstri 3212 | 1 ⊢ ran (𝐴 × 𝐵) ⊆ 𝐵 |
Colors of variables: wff set class |
Syntax hints: ⊆ wss 3154 × cxp 4658 ◡ccnv 4659 dom cdm 4660 ran crn 4661 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-opab 4092 df-xp 4666 df-rel 4667 df-cnv 4668 df-dm 4670 df-rn 4671 |
This theorem is referenced by: rnxpss2 5100 rnxpid 5101 ssxpbm 5102 ssxp2 5104 ssrnres 5109 funssxp 5424 fconst 5450 dff2 5703 fliftf 5843 tfrcllembfn 6412 frecuzrdgtcl 10486 cnconst2 14412 lmss 14425 exmidsbthrlem 15582 |
Copyright terms: Public domain | W3C validator |