| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > dmxpss | GIF version | ||
| Description: The domain of a cross product is a subclass of the first factor. (Contributed by NM, 19-Mar-2007.) | 
| Ref | Expression | 
|---|---|
| dmxpss | ⊢ dom (𝐴 × 𝐵) ⊆ 𝐴 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | vex 2766 | . . . 4 ⊢ 𝑥 ∈ V | |
| 2 | 1 | eldm2 4864 | . . 3 ⊢ (𝑥 ∈ dom (𝐴 × 𝐵) ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵)) | 
| 3 | opelxp1 4697 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) → 𝑥 ∈ 𝐴) | |
| 4 | 3 | exlimiv 1612 | . . 3 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) → 𝑥 ∈ 𝐴) | 
| 5 | 2, 4 | sylbi 121 | . 2 ⊢ (𝑥 ∈ dom (𝐴 × 𝐵) → 𝑥 ∈ 𝐴) | 
| 6 | 5 | ssriv 3187 | 1 ⊢ dom (𝐴 × 𝐵) ⊆ 𝐴 | 
| Colors of variables: wff set class | 
| Syntax hints: ∃wex 1506 ∈ wcel 2167 ⊆ wss 3157 〈cop 3625 × cxp 4661 dom cdm 4663 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-xp 4669 df-dm 4673 | 
| This theorem is referenced by: rnxpss 5101 dmxpss2 5102 ssxpbm 5105 ssxp1 5106 funssxp 5427 tfrlemibfn 6386 tfr1onlembfn 6402 tfrcllembfn 6415 frecuzrdgtcl 10504 frecuzrdgdomlem 10509 dvbssntrcntop 14920 | 
| Copyright terms: Public domain | W3C validator |