![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dmxpss | GIF version |
Description: The domain of a cross product is a subclass of the first factor. (Contributed by NM, 19-Mar-2007.) |
Ref | Expression |
---|---|
dmxpss | ⊢ dom (𝐴 × 𝐵) ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2763 | . . . 4 ⊢ 𝑥 ∈ V | |
2 | 1 | eldm2 4861 | . . 3 ⊢ (𝑥 ∈ dom (𝐴 × 𝐵) ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵)) |
3 | opelxp1 4694 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) → 𝑥 ∈ 𝐴) | |
4 | 3 | exlimiv 1609 | . . 3 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) → 𝑥 ∈ 𝐴) |
5 | 2, 4 | sylbi 121 | . 2 ⊢ (𝑥 ∈ dom (𝐴 × 𝐵) → 𝑥 ∈ 𝐴) |
6 | 5 | ssriv 3184 | 1 ⊢ dom (𝐴 × 𝐵) ⊆ 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∃wex 1503 ∈ wcel 2164 ⊆ wss 3154 〈cop 3622 × cxp 4658 dom cdm 4660 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-opab 4092 df-xp 4666 df-dm 4670 |
This theorem is referenced by: rnxpss 5098 dmxpss2 5099 ssxpbm 5102 ssxp1 5103 funssxp 5424 tfrlemibfn 6383 tfr1onlembfn 6399 tfrcllembfn 6412 frecuzrdgtcl 10486 frecuzrdgdomlem 10491 dvbssntrcntop 14863 |
Copyright terms: Public domain | W3C validator |