![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dmxpss | GIF version |
Description: The domain of a cross product is a subclass of the first factor. (Contributed by NM, 19-Mar-2007.) |
Ref | Expression |
---|---|
dmxpss | ⊢ dom (𝐴 × 𝐵) ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2658 | . . . 4 ⊢ 𝑥 ∈ V | |
2 | 1 | eldm2 4695 | . . 3 ⊢ (𝑥 ∈ dom (𝐴 × 𝐵) ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵)) |
3 | opelxp1 4531 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) → 𝑥 ∈ 𝐴) | |
4 | 3 | exlimiv 1558 | . . 3 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) → 𝑥 ∈ 𝐴) |
5 | 2, 4 | sylbi 120 | . 2 ⊢ (𝑥 ∈ dom (𝐴 × 𝐵) → 𝑥 ∈ 𝐴) |
6 | 5 | ssriv 3065 | 1 ⊢ dom (𝐴 × 𝐵) ⊆ 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∃wex 1449 ∈ wcel 1461 ⊆ wss 3035 〈cop 3494 × cxp 4495 dom cdm 4497 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-14 1473 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-sep 4004 ax-pow 4056 ax-pr 4089 |
This theorem depends on definitions: df-bi 116 df-3an 945 df-tru 1315 df-nf 1418 df-sb 1717 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ral 2393 df-rex 2394 df-v 2657 df-un 3039 df-in 3041 df-ss 3048 df-pw 3476 df-sn 3497 df-pr 3498 df-op 3500 df-br 3894 df-opab 3948 df-xp 4503 df-dm 4507 |
This theorem is referenced by: rnxpss 4926 dmxpss2 4927 ssxpbm 4930 ssxp1 4931 funssxp 5248 tfrlemibfn 6177 tfr1onlembfn 6193 tfrcllembfn 6206 frecuzrdgtcl 10072 frecuzrdgdomlem 10077 dvbssntrcntop 12602 |
Copyright terms: Public domain | W3C validator |