ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmxpss GIF version

Theorem dmxpss 5097
Description: The domain of a cross product is a subclass of the first factor. (Contributed by NM, 19-Mar-2007.)
Assertion
Ref Expression
dmxpss dom (𝐴 × 𝐵) ⊆ 𝐴

Proof of Theorem dmxpss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2763 . . . 4 𝑥 ∈ V
21eldm2 4861 . . 3 (𝑥 ∈ dom (𝐴 × 𝐵) ↔ ∃𝑦𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵))
3 opelxp1 4694 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → 𝑥𝐴)
43exlimiv 1609 . . 3 (∃𝑦𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → 𝑥𝐴)
52, 4sylbi 121 . 2 (𝑥 ∈ dom (𝐴 × 𝐵) → 𝑥𝐴)
65ssriv 3184 1 dom (𝐴 × 𝐵) ⊆ 𝐴
Colors of variables: wff set class
Syntax hints:  wex 1503  wcel 2164  wss 3154  cop 3622   × cxp 4658  dom cdm 4660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-xp 4666  df-dm 4670
This theorem is referenced by:  rnxpss  5098  dmxpss2  5099  ssxpbm  5102  ssxp1  5103  funssxp  5424  tfrlemibfn  6383  tfr1onlembfn  6399  tfrcllembfn  6412  frecuzrdgtcl  10486  frecuzrdgdomlem  10491  dvbssntrcntop  14863
  Copyright terms: Public domain W3C validator