| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmxpss | GIF version | ||
| Description: The domain of a cross product is a subclass of the first factor. (Contributed by NM, 19-Mar-2007.) |
| Ref | Expression |
|---|---|
| dmxpss | ⊢ dom (𝐴 × 𝐵) ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2782 | . . . 4 ⊢ 𝑥 ∈ V | |
| 2 | 1 | eldm2 4898 | . . 3 ⊢ (𝑥 ∈ dom (𝐴 × 𝐵) ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵)) |
| 3 | opelxp1 4730 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) → 𝑥 ∈ 𝐴) | |
| 4 | 3 | exlimiv 1624 | . . 3 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) → 𝑥 ∈ 𝐴) |
| 5 | 2, 4 | sylbi 121 | . 2 ⊢ (𝑥 ∈ dom (𝐴 × 𝐵) → 𝑥 ∈ 𝐴) |
| 6 | 5 | ssriv 3208 | 1 ⊢ dom (𝐴 × 𝐵) ⊆ 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ∃wex 1518 ∈ wcel 2180 ⊆ wss 3177 〈cop 3649 × cxp 4694 dom cdm 4696 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-br 4063 df-opab 4125 df-xp 4702 df-dm 4706 |
| This theorem is referenced by: rnxpss 5136 dmxpss2 5137 ssxpbm 5140 ssxp1 5141 funssxp 5469 tfrlemibfn 6444 tfr1onlembfn 6460 tfrcllembfn 6473 frecuzrdgtcl 10601 frecuzrdgdomlem 10606 dvbssntrcntop 15323 |
| Copyright terms: Public domain | W3C validator |