ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmxpss GIF version

Theorem dmxpss 5135
Description: The domain of a cross product is a subclass of the first factor. (Contributed by NM, 19-Mar-2007.)
Assertion
Ref Expression
dmxpss dom (𝐴 × 𝐵) ⊆ 𝐴

Proof of Theorem dmxpss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2782 . . . 4 𝑥 ∈ V
21eldm2 4898 . . 3 (𝑥 ∈ dom (𝐴 × 𝐵) ↔ ∃𝑦𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵))
3 opelxp1 4730 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → 𝑥𝐴)
43exlimiv 1624 . . 3 (∃𝑦𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → 𝑥𝐴)
52, 4sylbi 121 . 2 (𝑥 ∈ dom (𝐴 × 𝐵) → 𝑥𝐴)
65ssriv 3208 1 dom (𝐴 × 𝐵) ⊆ 𝐴
Colors of variables: wff set class
Syntax hints:  wex 1518  wcel 2180  wss 3177  cop 3649   × cxp 4694  dom cdm 4696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-br 4063  df-opab 4125  df-xp 4702  df-dm 4706
This theorem is referenced by:  rnxpss  5136  dmxpss2  5137  ssxpbm  5140  ssxp1  5141  funssxp  5469  tfrlemibfn  6444  tfr1onlembfn  6460  tfrcllembfn  6473  frecuzrdgtcl  10601  frecuzrdgdomlem  10606  dvbssntrcntop  15323
  Copyright terms: Public domain W3C validator