Step | Hyp | Ref
| Expression |
1 | | nninfsel.e |
. . . . . . 7
⊢ 𝐸 = (𝑞 ∈ (2o
↑𝑚 ℕ∞) ↦ (𝑛 ∈ ω ↦
if(∀𝑘 ∈ suc
𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o,
1o, ∅))) |
2 | 1 | nninfself 14046 |
. . . . . 6
⊢ 𝐸:(2o
↑𝑚
ℕ∞)⟶ℕ∞ |
3 | 2 | a1i 9 |
. . . . 5
⊢ (𝜑 → 𝐸:(2o ↑𝑚
ℕ∞)⟶ℕ∞) |
4 | | nninfsel.q |
. . . . 5
⊢ (𝜑 → 𝑄 ∈ (2o
↑𝑚 ℕ∞)) |
5 | 3, 4 | ffvelrnd 5632 |
. . . 4
⊢ (𝜑 → (𝐸‘𝑄) ∈
ℕ∞) |
6 | | nninff 7099 |
. . . 4
⊢ ((𝐸‘𝑄) ∈ ℕ∞ →
(𝐸‘𝑄):ω⟶2o) |
7 | 5, 6 | syl 14 |
. . 3
⊢ (𝜑 → (𝐸‘𝑄):ω⟶2o) |
8 | 7 | ffnd 5348 |
. 2
⊢ (𝜑 → (𝐸‘𝑄) Fn ω) |
9 | | 1onn 6499 |
. . . . 5
⊢
1o ∈ ω |
10 | | fnconstg 5395 |
. . . . 5
⊢
(1o ∈ ω → (ω × {1o})
Fn ω) |
11 | 9, 10 | ax-mp 5 |
. . . 4
⊢ (ω
× {1o}) Fn ω |
12 | | fconstmpt 4658 |
. . . . 5
⊢ (ω
× {1o}) = (𝑖 ∈ ω ↦
1o) |
13 | 12 | fneq1i 5292 |
. . . 4
⊢ ((ω
× {1o}) Fn ω ↔ (𝑖 ∈ ω ↦ 1o) Fn
ω) |
14 | 11, 13 | mpbi 144 |
. . 3
⊢ (𝑖 ∈ ω ↦
1o) Fn ω |
15 | 14 | a1i 9 |
. 2
⊢ (𝜑 → (𝑖 ∈ ω ↦ 1o) Fn
ω) |
16 | | elequ2 2146 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑘 → (𝑖 ∈ 𝑗 ↔ 𝑖 ∈ 𝑘)) |
17 | 16 | ifbid 3547 |
. . . . . . . . 9
⊢ (𝑗 = 𝑘 → if(𝑖 ∈ 𝑗, 1o, ∅) = if(𝑖 ∈ 𝑘, 1o, ∅)) |
18 | 17 | mpteq2dv 4080 |
. . . . . . . 8
⊢ (𝑗 = 𝑘 → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑗, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) |
19 | 18 | fveq2d 5500 |
. . . . . . 7
⊢ (𝑗 = 𝑘 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑗, 1o, ∅))) = (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅)))) |
20 | 19 | eqeq1d 2179 |
. . . . . 6
⊢ (𝑗 = 𝑘 → ((𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑗, 1o, ∅))) = 1o
↔ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) =
1o)) |
21 | 4 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ω) → 𝑄 ∈ (2o
↑𝑚 ℕ∞)) |
22 | | nninfsel.1 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑄‘(𝐸‘𝑄)) = 1o) |
23 | 22 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ω) → (𝑄‘(𝐸‘𝑄)) = 1o) |
24 | | simpr 109 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ω) → 𝑗 ∈ ω) |
25 | 1, 21, 23, 24 | nninfsellemqall 14048 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ω) → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑗, 1o, ∅))) =
1o) |
26 | 25 | ralrimiva 2543 |
. . . . . . 7
⊢ (𝜑 → ∀𝑗 ∈ ω (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑗, 1o, ∅))) =
1o) |
27 | 26 | ad2antrr 485 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ ω) ∧ 𝑘 ∈ suc 𝑗) → ∀𝑗 ∈ ω (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑗, 1o, ∅))) =
1o) |
28 | | simpr 109 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ ω) ∧ 𝑘 ∈ suc 𝑗) → 𝑘 ∈ suc 𝑗) |
29 | | peano2 4579 |
. . . . . . . 8
⊢ (𝑗 ∈ ω → suc 𝑗 ∈
ω) |
30 | 29 | ad2antlr 486 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ ω) ∧ 𝑘 ∈ suc 𝑗) → suc 𝑗 ∈ ω) |
31 | | elnn 4590 |
. . . . . . 7
⊢ ((𝑘 ∈ suc 𝑗 ∧ suc 𝑗 ∈ ω) → 𝑘 ∈ ω) |
32 | 28, 30, 31 | syl2anc 409 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ ω) ∧ 𝑘 ∈ suc 𝑗) → 𝑘 ∈ ω) |
33 | 20, 27, 32 | rspcdva 2839 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ ω) ∧ 𝑘 ∈ suc 𝑗) → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) =
1o) |
34 | 33 | ralrimiva 2543 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ ω) → ∀𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) =
1o) |
35 | 34 | iftrued 3533 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ ω) → if(∀𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o,
1o, ∅) = 1o) |
36 | | omex 4577 |
. . . . . . 7
⊢ ω
∈ V |
37 | 36 | mptex 5722 |
. . . . . 6
⊢ (𝑛 ∈ ω ↦
if(∀𝑘 ∈ suc
𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o,
1o, ∅)) ∈ V |
38 | 37 | a1i 9 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ω) → (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o,
1o, ∅)) ∈ V) |
39 | | fveq1 5495 |
. . . . . . . . . 10
⊢ (𝑞 = 𝑄 → (𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅)))) |
40 | 39 | eqeq1d 2179 |
. . . . . . . . 9
⊢ (𝑞 = 𝑄 → ((𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o
↔ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) =
1o)) |
41 | 40 | ralbidv 2470 |
. . . . . . . 8
⊢ (𝑞 = 𝑄 → (∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o
↔ ∀𝑘 ∈ suc
𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) =
1o)) |
42 | 41 | ifbid 3547 |
. . . . . . 7
⊢ (𝑞 = 𝑄 → if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o,
1o, ∅) = if(∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o,
1o, ∅)) |
43 | 42 | mpteq2dv 4080 |
. . . . . 6
⊢ (𝑞 = 𝑄 → (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o,
1o, ∅)) = (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o,
1o, ∅))) |
44 | 43, 1 | fvmptg 5572 |
. . . . 5
⊢ ((𝑄 ∈ (2o
↑𝑚 ℕ∞) ∧ (𝑛 ∈ ω ↦
if(∀𝑘 ∈ suc
𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o,
1o, ∅)) ∈ V) → (𝐸‘𝑄) = (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o,
1o, ∅))) |
45 | 21, 38, 44 | syl2anc 409 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ ω) → (𝐸‘𝑄) = (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o,
1o, ∅))) |
46 | | suceq 4387 |
. . . . . . 7
⊢ (𝑛 = 𝑗 → suc 𝑛 = suc 𝑗) |
47 | 46 | adantl 275 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ ω) ∧ 𝑛 = 𝑗) → suc 𝑛 = suc 𝑗) |
48 | 47 | raleqdv 2671 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ ω) ∧ 𝑛 = 𝑗) → (∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o
↔ ∀𝑘 ∈ suc
𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) =
1o)) |
49 | 48 | ifbid 3547 |
. . . 4
⊢ (((𝜑 ∧ 𝑗 ∈ ω) ∧ 𝑛 = 𝑗) → if(∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o,
1o, ∅) = if(∀𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o,
1o, ∅)) |
50 | 35, 9 | eqeltrdi 2261 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ ω) → if(∀𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o,
1o, ∅) ∈ ω) |
51 | 45, 49, 24, 50 | fvmptd 5577 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ ω) → ((𝐸‘𝑄)‘𝑗) = if(∀𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o,
1o, ∅)) |
52 | | eqidd 2171 |
. . . . . 6
⊢ (𝑖 = 𝑗 → 1o =
1o) |
53 | | eqid 2170 |
. . . . . 6
⊢ (𝑖 ∈ ω ↦
1o) = (𝑖 ∈
ω ↦ 1o) |
54 | 52, 53 | fvmptg 5572 |
. . . . 5
⊢ ((𝑗 ∈ ω ∧
1o ∈ ω) → ((𝑖 ∈ ω ↦
1o)‘𝑗) =
1o) |
55 | 9, 54 | mpan2 423 |
. . . 4
⊢ (𝑗 ∈ ω → ((𝑖 ∈ ω ↦
1o)‘𝑗) =
1o) |
56 | 55 | adantl 275 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ ω) → ((𝑖 ∈ ω ↦
1o)‘𝑗) =
1o) |
57 | 35, 51, 56 | 3eqtr4d 2213 |
. 2
⊢ ((𝜑 ∧ 𝑗 ∈ ω) → ((𝐸‘𝑄)‘𝑗) = ((𝑖 ∈ ω ↦
1o)‘𝑗)) |
58 | 8, 15, 57 | eqfnfvd 5596 |
1
⊢ (𝜑 → (𝐸‘𝑄) = (𝑖 ∈ ω ↦
1o)) |