![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > isopn3 | GIF version |
Description: A subset is open iff it equals its own interior. (Contributed by NM, 9-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
Ref | Expression |
---|---|
clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
isopn3 | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐽 ↔ ((int‘𝐽)‘𝑆) = 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clscld.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | ntrval 14278 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) = ∪ (𝐽 ∩ 𝒫 𝑆)) |
3 | inss2 3380 | . . . . . . . 8 ⊢ (𝐽 ∩ 𝒫 𝑆) ⊆ 𝒫 𝑆 | |
4 | 3 | unissi 3858 | . . . . . . 7 ⊢ ∪ (𝐽 ∩ 𝒫 𝑆) ⊆ ∪ 𝒫 𝑆 |
5 | unipw 4246 | . . . . . . 7 ⊢ ∪ 𝒫 𝑆 = 𝑆 | |
6 | 4, 5 | sseqtri 3213 | . . . . . 6 ⊢ ∪ (𝐽 ∩ 𝒫 𝑆) ⊆ 𝑆 |
7 | 6 | a1i 9 | . . . . 5 ⊢ (𝑆 ∈ 𝐽 → ∪ (𝐽 ∩ 𝒫 𝑆) ⊆ 𝑆) |
8 | id 19 | . . . . . . 7 ⊢ (𝑆 ∈ 𝐽 → 𝑆 ∈ 𝐽) | |
9 | pwidg 3615 | . . . . . . 7 ⊢ (𝑆 ∈ 𝐽 → 𝑆 ∈ 𝒫 𝑆) | |
10 | 8, 9 | elind 3344 | . . . . . 6 ⊢ (𝑆 ∈ 𝐽 → 𝑆 ∈ (𝐽 ∩ 𝒫 𝑆)) |
11 | elssuni 3863 | . . . . . 6 ⊢ (𝑆 ∈ (𝐽 ∩ 𝒫 𝑆) → 𝑆 ⊆ ∪ (𝐽 ∩ 𝒫 𝑆)) | |
12 | 10, 11 | syl 14 | . . . . 5 ⊢ (𝑆 ∈ 𝐽 → 𝑆 ⊆ ∪ (𝐽 ∩ 𝒫 𝑆)) |
13 | 7, 12 | eqssd 3196 | . . . 4 ⊢ (𝑆 ∈ 𝐽 → ∪ (𝐽 ∩ 𝒫 𝑆) = 𝑆) |
14 | 2, 13 | sylan9eq 2246 | . . 3 ⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑆 ∈ 𝐽) → ((int‘𝐽)‘𝑆) = 𝑆) |
15 | 14 | ex 115 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐽 → ((int‘𝐽)‘𝑆) = 𝑆)) |
16 | 1 | ntropn 14285 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) ∈ 𝐽) |
17 | eleq1 2256 | . . 3 ⊢ (((int‘𝐽)‘𝑆) = 𝑆 → (((int‘𝐽)‘𝑆) ∈ 𝐽 ↔ 𝑆 ∈ 𝐽)) | |
18 | 16, 17 | syl5ibcom 155 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (((int‘𝐽)‘𝑆) = 𝑆 → 𝑆 ∈ 𝐽)) |
19 | 15, 18 | impbid 129 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐽 ↔ ((int‘𝐽)‘𝑆) = 𝑆)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 ∩ cin 3152 ⊆ wss 3153 𝒫 cpw 3601 ∪ cuni 3835 ‘cfv 5254 Topctop 14165 intcnt 14261 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-top 14166 df-ntr 14264 |
This theorem is referenced by: ntridm 14294 ntrtop 14296 ntr0 14302 isopn3i 14303 cnntr 14393 |
Copyright terms: Public domain | W3C validator |