| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isopn3 | GIF version | ||
| Description: A subset is open iff it equals its own interior. (Contributed by NM, 9-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| Ref | Expression |
|---|---|
| clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| isopn3 | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐽 ↔ ((int‘𝐽)‘𝑆) = 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | ntrval 14792 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) = ∪ (𝐽 ∩ 𝒫 𝑆)) |
| 3 | inss2 3425 | . . . . . . . 8 ⊢ (𝐽 ∩ 𝒫 𝑆) ⊆ 𝒫 𝑆 | |
| 4 | 3 | unissi 3911 | . . . . . . 7 ⊢ ∪ (𝐽 ∩ 𝒫 𝑆) ⊆ ∪ 𝒫 𝑆 |
| 5 | unipw 4303 | . . . . . . 7 ⊢ ∪ 𝒫 𝑆 = 𝑆 | |
| 6 | 4, 5 | sseqtri 3258 | . . . . . 6 ⊢ ∪ (𝐽 ∩ 𝒫 𝑆) ⊆ 𝑆 |
| 7 | 6 | a1i 9 | . . . . 5 ⊢ (𝑆 ∈ 𝐽 → ∪ (𝐽 ∩ 𝒫 𝑆) ⊆ 𝑆) |
| 8 | id 19 | . . . . . . 7 ⊢ (𝑆 ∈ 𝐽 → 𝑆 ∈ 𝐽) | |
| 9 | pwidg 3663 | . . . . . . 7 ⊢ (𝑆 ∈ 𝐽 → 𝑆 ∈ 𝒫 𝑆) | |
| 10 | 8, 9 | elind 3389 | . . . . . 6 ⊢ (𝑆 ∈ 𝐽 → 𝑆 ∈ (𝐽 ∩ 𝒫 𝑆)) |
| 11 | elssuni 3916 | . . . . . 6 ⊢ (𝑆 ∈ (𝐽 ∩ 𝒫 𝑆) → 𝑆 ⊆ ∪ (𝐽 ∩ 𝒫 𝑆)) | |
| 12 | 10, 11 | syl 14 | . . . . 5 ⊢ (𝑆 ∈ 𝐽 → 𝑆 ⊆ ∪ (𝐽 ∩ 𝒫 𝑆)) |
| 13 | 7, 12 | eqssd 3241 | . . . 4 ⊢ (𝑆 ∈ 𝐽 → ∪ (𝐽 ∩ 𝒫 𝑆) = 𝑆) |
| 14 | 2, 13 | sylan9eq 2282 | . . 3 ⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑆 ∈ 𝐽) → ((int‘𝐽)‘𝑆) = 𝑆) |
| 15 | 14 | ex 115 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐽 → ((int‘𝐽)‘𝑆) = 𝑆)) |
| 16 | 1 | ntropn 14799 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) ∈ 𝐽) |
| 17 | eleq1 2292 | . . 3 ⊢ (((int‘𝐽)‘𝑆) = 𝑆 → (((int‘𝐽)‘𝑆) ∈ 𝐽 ↔ 𝑆 ∈ 𝐽)) | |
| 18 | 16, 17 | syl5ibcom 155 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (((int‘𝐽)‘𝑆) = 𝑆 → 𝑆 ∈ 𝐽)) |
| 19 | 15, 18 | impbid 129 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐽 ↔ ((int‘𝐽)‘𝑆) = 𝑆)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ∩ cin 3196 ⊆ wss 3197 𝒫 cpw 3649 ∪ cuni 3888 ‘cfv 5318 Topctop 14679 intcnt 14775 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-top 14680 df-ntr 14778 |
| This theorem is referenced by: ntridm 14808 ntrtop 14810 ntr0 14816 isopn3i 14817 cnntr 14907 |
| Copyright terms: Public domain | W3C validator |