ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isopn3 GIF version

Theorem isopn3 13978
Description: A subset is open iff it equals its own interior. (Contributed by NM, 9-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
isopn3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆𝐽 ↔ ((int‘𝐽)‘𝑆) = 𝑆))

Proof of Theorem isopn3
StepHypRef Expression
1 clscld.1 . . . . 5 𝑋 = 𝐽
21ntrval 13963 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) = (𝐽 ∩ 𝒫 𝑆))
3 inss2 3368 . . . . . . . 8 (𝐽 ∩ 𝒫 𝑆) ⊆ 𝒫 𝑆
43unissi 3844 . . . . . . 7 (𝐽 ∩ 𝒫 𝑆) ⊆ 𝒫 𝑆
5 unipw 4229 . . . . . . 7 𝒫 𝑆 = 𝑆
64, 5sseqtri 3201 . . . . . 6 (𝐽 ∩ 𝒫 𝑆) ⊆ 𝑆
76a1i 9 . . . . 5 (𝑆𝐽 (𝐽 ∩ 𝒫 𝑆) ⊆ 𝑆)
8 id 19 . . . . . . 7 (𝑆𝐽𝑆𝐽)
9 pwidg 3601 . . . . . . 7 (𝑆𝐽𝑆 ∈ 𝒫 𝑆)
108, 9elind 3332 . . . . . 6 (𝑆𝐽𝑆 ∈ (𝐽 ∩ 𝒫 𝑆))
11 elssuni 3849 . . . . . 6 (𝑆 ∈ (𝐽 ∩ 𝒫 𝑆) → 𝑆 (𝐽 ∩ 𝒫 𝑆))
1210, 11syl 14 . . . . 5 (𝑆𝐽𝑆 (𝐽 ∩ 𝒫 𝑆))
137, 12eqssd 3184 . . . 4 (𝑆𝐽 (𝐽 ∩ 𝒫 𝑆) = 𝑆)
142, 13sylan9eq 2240 . . 3 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑆𝐽) → ((int‘𝐽)‘𝑆) = 𝑆)
1514ex 115 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆𝐽 → ((int‘𝐽)‘𝑆) = 𝑆))
161ntropn 13970 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) ∈ 𝐽)
17 eleq1 2250 . . 3 (((int‘𝐽)‘𝑆) = 𝑆 → (((int‘𝐽)‘𝑆) ∈ 𝐽𝑆𝐽))
1816, 17syl5ibcom 155 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (((int‘𝐽)‘𝑆) = 𝑆𝑆𝐽))
1915, 18impbid 129 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆𝐽 ↔ ((int‘𝐽)‘𝑆) = 𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1363  wcel 2158  cin 3140  wss 3141  𝒫 cpw 3587   cuni 3821  cfv 5228  Topctop 13850  intcnt 13946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-top 13851  df-ntr 13949
This theorem is referenced by:  ntridm  13979  ntrtop  13981  ntr0  13987  isopn3i  13988  cnntr  14078
  Copyright terms: Public domain W3C validator