ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isopn3 GIF version

Theorem isopn3 12765
Description: A subset is open iff it equals its own interior. (Contributed by NM, 9-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
isopn3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆𝐽 ↔ ((int‘𝐽)‘𝑆) = 𝑆))

Proof of Theorem isopn3
StepHypRef Expression
1 clscld.1 . . . . 5 𝑋 = 𝐽
21ntrval 12750 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) = (𝐽 ∩ 𝒫 𝑆))
3 inss2 3343 . . . . . . . 8 (𝐽 ∩ 𝒫 𝑆) ⊆ 𝒫 𝑆
43unissi 3812 . . . . . . 7 (𝐽 ∩ 𝒫 𝑆) ⊆ 𝒫 𝑆
5 unipw 4195 . . . . . . 7 𝒫 𝑆 = 𝑆
64, 5sseqtri 3176 . . . . . 6 (𝐽 ∩ 𝒫 𝑆) ⊆ 𝑆
76a1i 9 . . . . 5 (𝑆𝐽 (𝐽 ∩ 𝒫 𝑆) ⊆ 𝑆)
8 id 19 . . . . . . 7 (𝑆𝐽𝑆𝐽)
9 pwidg 3573 . . . . . . 7 (𝑆𝐽𝑆 ∈ 𝒫 𝑆)
108, 9elind 3307 . . . . . 6 (𝑆𝐽𝑆 ∈ (𝐽 ∩ 𝒫 𝑆))
11 elssuni 3817 . . . . . 6 (𝑆 ∈ (𝐽 ∩ 𝒫 𝑆) → 𝑆 (𝐽 ∩ 𝒫 𝑆))
1210, 11syl 14 . . . . 5 (𝑆𝐽𝑆 (𝐽 ∩ 𝒫 𝑆))
137, 12eqssd 3159 . . . 4 (𝑆𝐽 (𝐽 ∩ 𝒫 𝑆) = 𝑆)
142, 13sylan9eq 2219 . . 3 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑆𝐽) → ((int‘𝐽)‘𝑆) = 𝑆)
1514ex 114 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆𝐽 → ((int‘𝐽)‘𝑆) = 𝑆))
161ntropn 12757 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) ∈ 𝐽)
17 eleq1 2229 . . 3 (((int‘𝐽)‘𝑆) = 𝑆 → (((int‘𝐽)‘𝑆) ∈ 𝐽𝑆𝐽))
1816, 17syl5ibcom 154 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (((int‘𝐽)‘𝑆) = 𝑆𝑆𝐽))
1915, 18impbid 128 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆𝐽 ↔ ((int‘𝐽)‘𝑆) = 𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  cin 3115  wss 3116  𝒫 cpw 3559   cuni 3789  cfv 5188  Topctop 12635  intcnt 12733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-top 12636  df-ntr 12736
This theorem is referenced by:  ntridm  12766  ntrtop  12768  ntr0  12774  isopn3i  12775  cnntr  12865
  Copyright terms: Public domain W3C validator