Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isopn3 | GIF version |
Description: A subset is open iff it equals its own interior. (Contributed by NM, 9-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
Ref | Expression |
---|---|
clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
isopn3 | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐽 ↔ ((int‘𝐽)‘𝑆) = 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clscld.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | ntrval 12750 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) = ∪ (𝐽 ∩ 𝒫 𝑆)) |
3 | inss2 3343 | . . . . . . . 8 ⊢ (𝐽 ∩ 𝒫 𝑆) ⊆ 𝒫 𝑆 | |
4 | 3 | unissi 3812 | . . . . . . 7 ⊢ ∪ (𝐽 ∩ 𝒫 𝑆) ⊆ ∪ 𝒫 𝑆 |
5 | unipw 4195 | . . . . . . 7 ⊢ ∪ 𝒫 𝑆 = 𝑆 | |
6 | 4, 5 | sseqtri 3176 | . . . . . 6 ⊢ ∪ (𝐽 ∩ 𝒫 𝑆) ⊆ 𝑆 |
7 | 6 | a1i 9 | . . . . 5 ⊢ (𝑆 ∈ 𝐽 → ∪ (𝐽 ∩ 𝒫 𝑆) ⊆ 𝑆) |
8 | id 19 | . . . . . . 7 ⊢ (𝑆 ∈ 𝐽 → 𝑆 ∈ 𝐽) | |
9 | pwidg 3573 | . . . . . . 7 ⊢ (𝑆 ∈ 𝐽 → 𝑆 ∈ 𝒫 𝑆) | |
10 | 8, 9 | elind 3307 | . . . . . 6 ⊢ (𝑆 ∈ 𝐽 → 𝑆 ∈ (𝐽 ∩ 𝒫 𝑆)) |
11 | elssuni 3817 | . . . . . 6 ⊢ (𝑆 ∈ (𝐽 ∩ 𝒫 𝑆) → 𝑆 ⊆ ∪ (𝐽 ∩ 𝒫 𝑆)) | |
12 | 10, 11 | syl 14 | . . . . 5 ⊢ (𝑆 ∈ 𝐽 → 𝑆 ⊆ ∪ (𝐽 ∩ 𝒫 𝑆)) |
13 | 7, 12 | eqssd 3159 | . . . 4 ⊢ (𝑆 ∈ 𝐽 → ∪ (𝐽 ∩ 𝒫 𝑆) = 𝑆) |
14 | 2, 13 | sylan9eq 2219 | . . 3 ⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑆 ∈ 𝐽) → ((int‘𝐽)‘𝑆) = 𝑆) |
15 | 14 | ex 114 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐽 → ((int‘𝐽)‘𝑆) = 𝑆)) |
16 | 1 | ntropn 12757 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) ∈ 𝐽) |
17 | eleq1 2229 | . . 3 ⊢ (((int‘𝐽)‘𝑆) = 𝑆 → (((int‘𝐽)‘𝑆) ∈ 𝐽 ↔ 𝑆 ∈ 𝐽)) | |
18 | 16, 17 | syl5ibcom 154 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (((int‘𝐽)‘𝑆) = 𝑆 → 𝑆 ∈ 𝐽)) |
19 | 15, 18 | impbid 128 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐽 ↔ ((int‘𝐽)‘𝑆) = 𝑆)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∈ wcel 2136 ∩ cin 3115 ⊆ wss 3116 𝒫 cpw 3559 ∪ cuni 3789 ‘cfv 5188 Topctop 12635 intcnt 12733 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-top 12636 df-ntr 12736 |
This theorem is referenced by: ntridm 12766 ntrtop 12768 ntr0 12774 isopn3i 12775 cnntr 12865 |
Copyright terms: Public domain | W3C validator |