| Step | Hyp | Ref
| Expression |
| 1 | | dvadd.bf |
. . . 4
⊢ (𝜑 → 𝐶(𝑆 D 𝐹)𝐾) |
| 2 | | eqid 2196 |
. . . . 5
⊢ (𝐽 ↾t 𝑆) = (𝐽 ↾t 𝑆) |
| 3 | | dvaddcntop.j |
. . . . 5
⊢ 𝐽 = (MetOpen‘(abs ∘
− )) |
| 4 | | eqid 2196 |
. . . . 5
⊢ (𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶))) = (𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶))) |
| 5 | | dvaddbr.s |
. . . . 5
⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 6 | | dvadd.f |
. . . . 5
⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
| 7 | | dvadd.x |
. . . . 5
⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
| 8 | 2, 3, 4, 5, 6, 7 | eldvap 14918 |
. . . 4
⊢ (𝜑 → (𝐶(𝑆 D 𝐹)𝐾 ↔ (𝐶 ∈ ((int‘(𝐽 ↾t 𝑆))‘𝑋) ∧ 𝐾 ∈ ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)))) |
| 9 | 1, 8 | mpbid 147 |
. . 3
⊢ (𝜑 → (𝐶 ∈ ((int‘(𝐽 ↾t 𝑆))‘𝑋) ∧ 𝐾 ∈ ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶))) |
| 10 | 9 | simpld 112 |
. 2
⊢ (𝜑 → 𝐶 ∈ ((int‘(𝐽 ↾t 𝑆))‘𝑋)) |
| 11 | 7, 5 | sstrd 3193 |
. . . . . 6
⊢ (𝜑 → 𝑋 ⊆ ℂ) |
| 12 | 3 | cntoptopon 14768 |
. . . . . . . . . 10
⊢ 𝐽 ∈
(TopOn‘ℂ) |
| 13 | | resttopon 14407 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ (TopOn‘ℂ)
∧ 𝑆 ⊆ ℂ)
→ (𝐽
↾t 𝑆)
∈ (TopOn‘𝑆)) |
| 14 | 12, 5, 13 | sylancr 414 |
. . . . . . . . 9
⊢ (𝜑 → (𝐽 ↾t 𝑆) ∈ (TopOn‘𝑆)) |
| 15 | | topontop 14250 |
. . . . . . . . 9
⊢ ((𝐽 ↾t 𝑆) ∈ (TopOn‘𝑆) → (𝐽 ↾t 𝑆) ∈ Top) |
| 16 | 14, 15 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → (𝐽 ↾t 𝑆) ∈ Top) |
| 17 | | toponuni 14251 |
. . . . . . . . . 10
⊢ ((𝐽 ↾t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = ∪ (𝐽 ↾t 𝑆)) |
| 18 | 14, 17 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → 𝑆 = ∪ (𝐽 ↾t 𝑆)) |
| 19 | 7, 18 | sseqtrd 3221 |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ⊆ ∪ (𝐽 ↾t 𝑆)) |
| 20 | | eqid 2196 |
. . . . . . . . 9
⊢ ∪ (𝐽
↾t 𝑆) =
∪ (𝐽 ↾t 𝑆) |
| 21 | 20 | ntrss2 14357 |
. . . . . . . 8
⊢ (((𝐽 ↾t 𝑆) ∈ Top ∧ 𝑋 ⊆ ∪ (𝐽
↾t 𝑆))
→ ((int‘(𝐽
↾t 𝑆))‘𝑋) ⊆ 𝑋) |
| 22 | 16, 19, 21 | syl2anc 411 |
. . . . . . 7
⊢ (𝜑 → ((int‘(𝐽 ↾t 𝑆))‘𝑋) ⊆ 𝑋) |
| 23 | 22, 10 | sseldd 3184 |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ 𝑋) |
| 24 | 6, 11, 23 | dvlemap 14916 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶)) ∈ ℂ) |
| 25 | | dvaddxx.g |
. . . . . . 7
⊢ (𝜑 → 𝐺:𝑋⟶ℂ) |
| 26 | 25 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → 𝐺:𝑋⟶ℂ) |
| 27 | | elrabi 2917 |
. . . . . . 7
⊢ (𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} → 𝑧 ∈ 𝑋) |
| 28 | 27 | adantl 277 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → 𝑧 ∈ 𝑋) |
| 29 | 26, 28 | ffvelcdmd 5698 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (𝐺‘𝑧) ∈ ℂ) |
| 30 | 24, 29 | mulcld 8047 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → ((((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶)) · (𝐺‘𝑧)) ∈ ℂ) |
| 31 | 25, 11, 23 | dvlemap 14916 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶)) ∈ ℂ) |
| 32 | 6, 23 | ffvelcdmd 5698 |
. . . . . 6
⊢ (𝜑 → (𝐹‘𝐶) ∈ ℂ) |
| 33 | 32 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (𝐹‘𝐶) ∈ ℂ) |
| 34 | 31, 33 | mulcld 8047 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → ((((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶)) · (𝐹‘𝐶)) ∈ ℂ) |
| 35 | | ssidd 3204 |
. . . 4
⊢ (𝜑 → ℂ ⊆
ℂ) |
| 36 | | txtopon 14498 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘ℂ)
∧ 𝐽 ∈
(TopOn‘ℂ)) → (𝐽 ×t 𝐽) ∈ (TopOn‘(ℂ ×
ℂ))) |
| 37 | 12, 12, 36 | mp2an 426 |
. . . . 5
⊢ (𝐽 ×t 𝐽) ∈ (TopOn‘(ℂ
× ℂ)) |
| 38 | 37 | toponrestid 14257 |
. . . 4
⊢ (𝐽 ×t 𝐽) = ((𝐽 ×t 𝐽) ↾t (ℂ ×
ℂ)) |
| 39 | 9 | simprd 114 |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)) |
| 40 | | cnex 8003 |
. . . . . . . . . . . . 13
⊢ ℂ
∈ V |
| 41 | 40 | a1i 9 |
. . . . . . . . . . . 12
⊢ (𝜑 → ℂ ∈
V) |
| 42 | 41, 5 | ssexd 4173 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑆 ∈ V) |
| 43 | | elpm2r 6725 |
. . . . . . . . . . . 12
⊢
(((ℂ ∈ V ∧ 𝑆 ∈ V) ∧ (𝐺:𝑋⟶ℂ ∧ 𝑋 ⊆ 𝑆)) → 𝐺 ∈ (ℂ ↑pm
𝑆)) |
| 44 | 41, 42, 25, 7, 43 | syl22anc 1250 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺 ∈ (ℂ ↑pm
𝑆)) |
| 45 | | reldvg 14915 |
. . . . . . . . . . 11
⊢ ((𝑆 ⊆ ℂ ∧ 𝐺 ∈ (ℂ
↑pm 𝑆)) → Rel (𝑆 D 𝐺)) |
| 46 | 5, 44, 45 | syl2anc 411 |
. . . . . . . . . 10
⊢ (𝜑 → Rel (𝑆 D 𝐺)) |
| 47 | | dvadd.bg |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶(𝑆 D 𝐺)𝐿) |
| 48 | | releldm 4901 |
. . . . . . . . . 10
⊢ ((Rel
(𝑆 D 𝐺) ∧ 𝐶(𝑆 D 𝐺)𝐿) → 𝐶 ∈ dom (𝑆 D 𝐺)) |
| 49 | 46, 47, 48 | syl2anc 411 |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈ dom (𝑆 D 𝐺)) |
| 50 | | eqid 2196 |
. . . . . . . . . 10
⊢ (𝐽 ↾t 𝑋) = (𝐽 ↾t 𝑋) |
| 51 | 50, 3 | dvcnp2cntop 14935 |
. . . . . . . . 9
⊢ (((𝑆 ⊆ ℂ ∧ 𝐺:𝑋⟶ℂ ∧ 𝑋 ⊆ 𝑆) ∧ 𝐶 ∈ dom (𝑆 D 𝐺)) → 𝐺 ∈ (((𝐽 ↾t 𝑋) CnP 𝐽)‘𝐶)) |
| 52 | 5, 25, 7, 49, 51 | syl31anc 1252 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ (((𝐽 ↾t 𝑋) CnP 𝐽)‘𝐶)) |
| 53 | 3, 50 | cnplimccntop 14906 |
. . . . . . . . 9
⊢ ((𝑋 ⊆ ℂ ∧ 𝐶 ∈ 𝑋) → (𝐺 ∈ (((𝐽 ↾t 𝑋) CnP 𝐽)‘𝐶) ↔ (𝐺:𝑋⟶ℂ ∧ (𝐺‘𝐶) ∈ (𝐺 limℂ 𝐶)))) |
| 54 | 11, 23, 53 | syl2anc 411 |
. . . . . . . 8
⊢ (𝜑 → (𝐺 ∈ (((𝐽 ↾t 𝑋) CnP 𝐽)‘𝐶) ↔ (𝐺:𝑋⟶ℂ ∧ (𝐺‘𝐶) ∈ (𝐺 limℂ 𝐶)))) |
| 55 | 52, 54 | mpbid 147 |
. . . . . . 7
⊢ (𝜑 → (𝐺:𝑋⟶ℂ ∧ (𝐺‘𝐶) ∈ (𝐺 limℂ 𝐶))) |
| 56 | 55 | simprd 114 |
. . . . . 6
⊢ (𝜑 → (𝐺‘𝐶) ∈ (𝐺 limℂ 𝐶)) |
| 57 | 25, 11 | limcdifap 14898 |
. . . . . . 7
⊢ (𝜑 → (𝐺 limℂ 𝐶) = ((𝐺 ↾ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) limℂ 𝐶)) |
| 58 | | ssrab2 3268 |
. . . . . . . . . 10
⊢ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ⊆ 𝑋 |
| 59 | 58 | a1i 9 |
. . . . . . . . 9
⊢ (𝜑 → {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ⊆ 𝑋) |
| 60 | 25, 59 | feqresmpt 5615 |
. . . . . . . 8
⊢ (𝜑 → (𝐺 ↾ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) = (𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (𝐺‘𝑧))) |
| 61 | 60 | oveq1d 5937 |
. . . . . . 7
⊢ (𝜑 → ((𝐺 ↾ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) limℂ 𝐶) = ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (𝐺‘𝑧)) limℂ 𝐶)) |
| 62 | 57, 61 | eqtrd 2229 |
. . . . . 6
⊢ (𝜑 → (𝐺 limℂ 𝐶) = ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (𝐺‘𝑧)) limℂ 𝐶)) |
| 63 | 56, 62 | eleqtrd 2275 |
. . . . 5
⊢ (𝜑 → (𝐺‘𝐶) ∈ ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (𝐺‘𝑧)) limℂ 𝐶)) |
| 64 | 3 | mulcncntop 14800 |
. . . . . 6
⊢ ·
∈ ((𝐽
×t 𝐽) Cn
𝐽) |
| 65 | 5, 6, 7 | dvcl 14919 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐶(𝑆 D 𝐹)𝐾) → 𝐾 ∈ ℂ) |
| 66 | 1, 65 | mpdan 421 |
. . . . . . 7
⊢ (𝜑 → 𝐾 ∈ ℂ) |
| 67 | 25, 23 | ffvelcdmd 5698 |
. . . . . . 7
⊢ (𝜑 → (𝐺‘𝐶) ∈ ℂ) |
| 68 | 66, 67 | opelxpd 4696 |
. . . . . 6
⊢ (𝜑 → 〈𝐾, (𝐺‘𝐶)〉 ∈ (ℂ ×
ℂ)) |
| 69 | 37 | toponunii 14253 |
. . . . . . 7
⊢ (ℂ
× ℂ) = ∪ (𝐽 ×t 𝐽) |
| 70 | 69 | cncnpi 14464 |
. . . . . 6
⊢ ((
· ∈ ((𝐽
×t 𝐽) Cn
𝐽) ∧ 〈𝐾, (𝐺‘𝐶)〉 ∈ (ℂ × ℂ))
→ · ∈ (((𝐽
×t 𝐽) CnP
𝐽)‘〈𝐾, (𝐺‘𝐶)〉)) |
| 71 | 64, 68, 70 | sylancr 414 |
. . . . 5
⊢ (𝜑 → · ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘〈𝐾, (𝐺‘𝐶)〉)) |
| 72 | 24, 29, 35, 35, 3, 38, 39, 63, 71 | limccnp2cntop 14913 |
. . . 4
⊢ (𝜑 → (𝐾 · (𝐺‘𝐶)) ∈ ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ ((((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶)) · (𝐺‘𝑧))) limℂ 𝐶)) |
| 73 | | eqid 2196 |
. . . . . . . 8
⊢ (𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) = (𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) |
| 74 | 2, 3, 73, 5, 25, 7 | eldvap 14918 |
. . . . . . 7
⊢ (𝜑 → (𝐶(𝑆 D 𝐺)𝐿 ↔ (𝐶 ∈ ((int‘(𝐽 ↾t 𝑆))‘𝑋) ∧ 𝐿 ∈ ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)))) |
| 75 | 47, 74 | mpbid 147 |
. . . . . 6
⊢ (𝜑 → (𝐶 ∈ ((int‘(𝐽 ↾t 𝑆))‘𝑋) ∧ 𝐿 ∈ ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶))) |
| 76 | 75 | simprd 114 |
. . . . 5
⊢ (𝜑 → 𝐿 ∈ ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)) |
| 77 | | cncfmptc 14832 |
. . . . . . . 8
⊢ (((𝐹‘𝐶) ∈ ℂ ∧ 𝑋 ⊆ ℂ ∧ ℂ ⊆
ℂ) → (𝑧 ∈
𝑋 ↦ (𝐹‘𝐶)) ∈ (𝑋–cn→ℂ)) |
| 78 | 32, 11, 35, 77 | syl3anc 1249 |
. . . . . . 7
⊢ (𝜑 → (𝑧 ∈ 𝑋 ↦ (𝐹‘𝐶)) ∈ (𝑋–cn→ℂ)) |
| 79 | | eqidd 2197 |
. . . . . . 7
⊢ (𝑧 = 𝐶 → (𝐹‘𝐶) = (𝐹‘𝐶)) |
| 80 | 78, 23, 79 | cnmptlimc 14910 |
. . . . . 6
⊢ (𝜑 → (𝐹‘𝐶) ∈ ((𝑧 ∈ 𝑋 ↦ (𝐹‘𝐶)) limℂ 𝐶)) |
| 81 | 32 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (𝐹‘𝐶) ∈ ℂ) |
| 82 | 81 | fmpttd 5717 |
. . . . . . . 8
⊢ (𝜑 → (𝑧 ∈ 𝑋 ↦ (𝐹‘𝐶)):𝑋⟶ℂ) |
| 83 | 82, 11 | limcdifap 14898 |
. . . . . . 7
⊢ (𝜑 → ((𝑧 ∈ 𝑋 ↦ (𝐹‘𝐶)) limℂ 𝐶) = (((𝑧 ∈ 𝑋 ↦ (𝐹‘𝐶)) ↾ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) limℂ 𝐶)) |
| 84 | | resmpt 4994 |
. . . . . . . . 9
⊢ ({𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ⊆ 𝑋 → ((𝑧 ∈ 𝑋 ↦ (𝐹‘𝐶)) ↾ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) = (𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (𝐹‘𝐶))) |
| 85 | 58, 84 | mp1i 10 |
. . . . . . . 8
⊢ (𝜑 → ((𝑧 ∈ 𝑋 ↦ (𝐹‘𝐶)) ↾ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) = (𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (𝐹‘𝐶))) |
| 86 | 85 | oveq1d 5937 |
. . . . . . 7
⊢ (𝜑 → (((𝑧 ∈ 𝑋 ↦ (𝐹‘𝐶)) ↾ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) limℂ 𝐶) = ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (𝐹‘𝐶)) limℂ 𝐶)) |
| 87 | 83, 86 | eqtrd 2229 |
. . . . . 6
⊢ (𝜑 → ((𝑧 ∈ 𝑋 ↦ (𝐹‘𝐶)) limℂ 𝐶) = ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (𝐹‘𝐶)) limℂ 𝐶)) |
| 88 | 80, 87 | eleqtrd 2275 |
. . . . 5
⊢ (𝜑 → (𝐹‘𝐶) ∈ ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (𝐹‘𝐶)) limℂ 𝐶)) |
| 89 | 5, 25, 7 | dvcl 14919 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐶(𝑆 D 𝐺)𝐿) → 𝐿 ∈ ℂ) |
| 90 | 47, 89 | mpdan 421 |
. . . . . . 7
⊢ (𝜑 → 𝐿 ∈ ℂ) |
| 91 | 90, 32 | opelxpd 4696 |
. . . . . 6
⊢ (𝜑 → 〈𝐿, (𝐹‘𝐶)〉 ∈ (ℂ ×
ℂ)) |
| 92 | 69 | cncnpi 14464 |
. . . . . 6
⊢ ((
· ∈ ((𝐽
×t 𝐽) Cn
𝐽) ∧ 〈𝐿, (𝐹‘𝐶)〉 ∈ (ℂ × ℂ))
→ · ∈ (((𝐽
×t 𝐽) CnP
𝐽)‘〈𝐿, (𝐹‘𝐶)〉)) |
| 93 | 64, 91, 92 | sylancr 414 |
. . . . 5
⊢ (𝜑 → · ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘〈𝐿, (𝐹‘𝐶)〉)) |
| 94 | 31, 33, 35, 35, 3, 38, 76, 88, 93 | limccnp2cntop 14913 |
. . . 4
⊢ (𝜑 → (𝐿 · (𝐹‘𝐶)) ∈ ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ ((((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶)) · (𝐹‘𝐶))) limℂ 𝐶)) |
| 95 | 3 | addcncntop 14798 |
. . . . 5
⊢ + ∈
((𝐽 ×t
𝐽) Cn 𝐽) |
| 96 | 66, 67 | mulcld 8047 |
. . . . . 6
⊢ (𝜑 → (𝐾 · (𝐺‘𝐶)) ∈ ℂ) |
| 97 | 90, 32 | mulcld 8047 |
. . . . . 6
⊢ (𝜑 → (𝐿 · (𝐹‘𝐶)) ∈ ℂ) |
| 98 | 96, 97 | opelxpd 4696 |
. . . . 5
⊢ (𝜑 → 〈(𝐾 · (𝐺‘𝐶)), (𝐿 · (𝐹‘𝐶))〉 ∈ (ℂ ×
ℂ)) |
| 99 | 69 | cncnpi 14464 |
. . . . 5
⊢ (( +
∈ ((𝐽
×t 𝐽) Cn
𝐽) ∧ 〈(𝐾 · (𝐺‘𝐶)), (𝐿 · (𝐹‘𝐶))〉 ∈ (ℂ × ℂ))
→ + ∈ (((𝐽
×t 𝐽) CnP
𝐽)‘〈(𝐾 · (𝐺‘𝐶)), (𝐿 · (𝐹‘𝐶))〉)) |
| 100 | 95, 98, 99 | sylancr 414 |
. . . 4
⊢ (𝜑 → + ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘〈(𝐾 · (𝐺‘𝐶)), (𝐿 · (𝐹‘𝐶))〉)) |
| 101 | 30, 34, 35, 35, 3, 38, 72, 94, 100 | limccnp2cntop 14913 |
. . 3
⊢ (𝜑 → ((𝐾 · (𝐺‘𝐶)) + (𝐿 · (𝐹‘𝐶))) ∈ ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (((((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶)) · (𝐺‘𝑧)) + ((((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶)) · (𝐹‘𝐶)))) limℂ 𝐶)) |
| 102 | 6 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → 𝐹:𝑋⟶ℂ) |
| 103 | 102, 28 | ffvelcdmd 5698 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (𝐹‘𝑧) ∈ ℂ) |
| 104 | 103, 33 | subcld 8337 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → ((𝐹‘𝑧) − (𝐹‘𝐶)) ∈ ℂ) |
| 105 | 104, 29 | mulcld 8047 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (((𝐹‘𝑧) − (𝐹‘𝐶)) · (𝐺‘𝑧)) ∈ ℂ) |
| 106 | 67 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (𝐺‘𝐶) ∈ ℂ) |
| 107 | 29, 106 | subcld 8337 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → ((𝐺‘𝑧) − (𝐺‘𝐶)) ∈ ℂ) |
| 108 | 107, 33 | mulcld 8047 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (((𝐺‘𝑧) − (𝐺‘𝐶)) · (𝐹‘𝐶)) ∈ ℂ) |
| 109 | 11 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → 𝑋 ⊆ ℂ) |
| 110 | 109, 28 | sseldd 3184 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → 𝑧 ∈ ℂ) |
| 111 | 11, 23 | sseldd 3184 |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 112 | 111 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → 𝐶 ∈ ℂ) |
| 113 | 110, 112 | subcld 8337 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (𝑧 − 𝐶) ∈ ℂ) |
| 114 | | breq1 4036 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑧 → (𝑤 # 𝐶 ↔ 𝑧 # 𝐶)) |
| 115 | 114 | elrab 2920 |
. . . . . . . . . 10
⊢ (𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↔ (𝑧 ∈ 𝑋 ∧ 𝑧 # 𝐶)) |
| 116 | 115 | simprbi 275 |
. . . . . . . . 9
⊢ (𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} → 𝑧 # 𝐶) |
| 117 | 116 | adantl 277 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → 𝑧 # 𝐶) |
| 118 | 110, 112,
117 | subap0d 8671 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (𝑧 − 𝐶) # 0) |
| 119 | 105, 108,
113, 118 | divdirapd 8856 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (((((𝐹‘𝑧) − (𝐹‘𝐶)) · (𝐺‘𝑧)) + (((𝐺‘𝑧) − (𝐺‘𝐶)) · (𝐹‘𝐶))) / (𝑧 − 𝐶)) = (((((𝐹‘𝑧) − (𝐹‘𝐶)) · (𝐺‘𝑧)) / (𝑧 − 𝐶)) + ((((𝐺‘𝑧) − (𝐺‘𝐶)) · (𝐹‘𝐶)) / (𝑧 − 𝐶)))) |
| 120 | 103, 29 | mulcld 8047 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → ((𝐹‘𝑧) · (𝐺‘𝑧)) ∈ ℂ) |
| 121 | 33, 29 | mulcld 8047 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → ((𝐹‘𝐶) · (𝐺‘𝑧)) ∈ ℂ) |
| 122 | 33, 106 | mulcld 8047 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → ((𝐹‘𝐶) · (𝐺‘𝐶)) ∈ ℂ) |
| 123 | 120, 121,
122 | npncand 8361 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → ((((𝐹‘𝑧) · (𝐺‘𝑧)) − ((𝐹‘𝐶) · (𝐺‘𝑧))) + (((𝐹‘𝐶) · (𝐺‘𝑧)) − ((𝐹‘𝐶) · (𝐺‘𝐶)))) = (((𝐹‘𝑧) · (𝐺‘𝑧)) − ((𝐹‘𝐶) · (𝐺‘𝐶)))) |
| 124 | 103, 33, 29 | subdird 8441 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (((𝐹‘𝑧) − (𝐹‘𝐶)) · (𝐺‘𝑧)) = (((𝐹‘𝑧) · (𝐺‘𝑧)) − ((𝐹‘𝐶) · (𝐺‘𝑧)))) |
| 125 | 107, 33 | mulcomd 8048 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (((𝐺‘𝑧) − (𝐺‘𝐶)) · (𝐹‘𝐶)) = ((𝐹‘𝐶) · ((𝐺‘𝑧) − (𝐺‘𝐶)))) |
| 126 | 33, 29, 106 | subdid 8440 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → ((𝐹‘𝐶) · ((𝐺‘𝑧) − (𝐺‘𝐶))) = (((𝐹‘𝐶) · (𝐺‘𝑧)) − ((𝐹‘𝐶) · (𝐺‘𝐶)))) |
| 127 | 125, 126 | eqtrd 2229 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (((𝐺‘𝑧) − (𝐺‘𝐶)) · (𝐹‘𝐶)) = (((𝐹‘𝐶) · (𝐺‘𝑧)) − ((𝐹‘𝐶) · (𝐺‘𝐶)))) |
| 128 | 124, 127 | oveq12d 5940 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → ((((𝐹‘𝑧) − (𝐹‘𝐶)) · (𝐺‘𝑧)) + (((𝐺‘𝑧) − (𝐺‘𝐶)) · (𝐹‘𝐶))) = ((((𝐹‘𝑧) · (𝐺‘𝑧)) − ((𝐹‘𝐶) · (𝐺‘𝑧))) + (((𝐹‘𝐶) · (𝐺‘𝑧)) − ((𝐹‘𝐶) · (𝐺‘𝐶))))) |
| 129 | 28, 28 | elind 3348 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → 𝑧 ∈ (𝑋 ∩ 𝑋)) |
| 130 | 6 | ffnd 5408 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹 Fn 𝑋) |
| 131 | 130 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → 𝐹 Fn 𝑋) |
| 132 | 25 | ffnd 5408 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐺 Fn 𝑋) |
| 133 | 132 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → 𝐺 Fn 𝑋) |
| 134 | | ssexg 4172 |
. . . . . . . . . . . . 13
⊢ ((𝑋 ⊆ ℂ ∧ ℂ
∈ V) → 𝑋 ∈
V) |
| 135 | 11, 40, 134 | sylancl 413 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑋 ∈ V) |
| 136 | 135 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → 𝑋 ∈ V) |
| 137 | | eqid 2196 |
. . . . . . . . . . 11
⊢ (𝑋 ∩ 𝑋) = (𝑋 ∩ 𝑋) |
| 138 | | eqidd 2197 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) ∧ 𝑧 ∈ 𝑋) → (𝐹‘𝑧) = (𝐹‘𝑧)) |
| 139 | | eqidd 2197 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) ∧ 𝑧 ∈ 𝑋) → (𝐺‘𝑧) = (𝐺‘𝑧)) |
| 140 | 120 | adantr 276 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) ∧ 𝑧 ∈ (𝑋 ∩ 𝑋)) → ((𝐹‘𝑧) · (𝐺‘𝑧)) ∈ ℂ) |
| 141 | 131, 133,
136, 136, 137, 138, 139, 140 | ofvalg 6145 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) ∧ 𝑧 ∈ (𝑋 ∩ 𝑋)) → ((𝐹 ∘𝑓 · 𝐺)‘𝑧) = ((𝐹‘𝑧) · (𝐺‘𝑧))) |
| 142 | 129, 141 | mpdan 421 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → ((𝐹 ∘𝑓 · 𝐺)‘𝑧) = ((𝐹‘𝑧) · (𝐺‘𝑧))) |
| 143 | 23, 23 | elind 3348 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈ (𝑋 ∩ 𝑋)) |
| 144 | | eqidd 2197 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) ∧ 𝐶 ∈ 𝑋) → (𝐹‘𝐶) = (𝐹‘𝐶)) |
| 145 | | eqidd 2197 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) ∧ 𝐶 ∈ 𝑋) → (𝐺‘𝐶) = (𝐺‘𝐶)) |
| 146 | 122 | adantr 276 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) ∧ 𝐶 ∈ (𝑋 ∩ 𝑋)) → ((𝐹‘𝐶) · (𝐺‘𝐶)) ∈ ℂ) |
| 147 | 131, 133,
136, 136, 137, 144, 145, 146 | ofvalg 6145 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) ∧ 𝐶 ∈ (𝑋 ∩ 𝑋)) → ((𝐹 ∘𝑓 · 𝐺)‘𝐶) = ((𝐹‘𝐶) · (𝐺‘𝐶))) |
| 148 | 143, 147 | mpidan 423 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → ((𝐹 ∘𝑓 · 𝐺)‘𝐶) = ((𝐹‘𝐶) · (𝐺‘𝐶))) |
| 149 | 142, 148 | oveq12d 5940 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (((𝐹 ∘𝑓 · 𝐺)‘𝑧) − ((𝐹 ∘𝑓 · 𝐺)‘𝐶)) = (((𝐹‘𝑧) · (𝐺‘𝑧)) − ((𝐹‘𝐶) · (𝐺‘𝐶)))) |
| 150 | 123, 128,
149 | 3eqtr4d 2239 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → ((((𝐹‘𝑧) − (𝐹‘𝐶)) · (𝐺‘𝑧)) + (((𝐺‘𝑧) − (𝐺‘𝐶)) · (𝐹‘𝐶))) = (((𝐹 ∘𝑓 · 𝐺)‘𝑧) − ((𝐹 ∘𝑓 · 𝐺)‘𝐶))) |
| 151 | 150 | oveq1d 5937 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (((((𝐹‘𝑧) − (𝐹‘𝐶)) · (𝐺‘𝑧)) + (((𝐺‘𝑧) − (𝐺‘𝐶)) · (𝐹‘𝐶))) / (𝑧 − 𝐶)) = ((((𝐹 ∘𝑓 · 𝐺)‘𝑧) − ((𝐹 ∘𝑓 · 𝐺)‘𝐶)) / (𝑧 − 𝐶))) |
| 152 | 104, 29, 113, 118 | div23apd 8855 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → ((((𝐹‘𝑧) − (𝐹‘𝐶)) · (𝐺‘𝑧)) / (𝑧 − 𝐶)) = ((((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶)) · (𝐺‘𝑧))) |
| 153 | 107, 33, 113, 118 | div23apd 8855 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → ((((𝐺‘𝑧) − (𝐺‘𝐶)) · (𝐹‘𝐶)) / (𝑧 − 𝐶)) = ((((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶)) · (𝐹‘𝐶))) |
| 154 | 152, 153 | oveq12d 5940 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (((((𝐹‘𝑧) − (𝐹‘𝐶)) · (𝐺‘𝑧)) / (𝑧 − 𝐶)) + ((((𝐺‘𝑧) − (𝐺‘𝐶)) · (𝐹‘𝐶)) / (𝑧 − 𝐶))) = (((((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶)) · (𝐺‘𝑧)) + ((((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶)) · (𝐹‘𝐶)))) |
| 155 | 119, 151,
154 | 3eqtr3d 2237 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → ((((𝐹 ∘𝑓 · 𝐺)‘𝑧) − ((𝐹 ∘𝑓 · 𝐺)‘𝐶)) / (𝑧 − 𝐶)) = (((((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶)) · (𝐺‘𝑧)) + ((((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶)) · (𝐹‘𝐶)))) |
| 156 | 155 | mpteq2dva 4123 |
. . . 4
⊢ (𝜑 → (𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ ((((𝐹 ∘𝑓 · 𝐺)‘𝑧) − ((𝐹 ∘𝑓 · 𝐺)‘𝐶)) / (𝑧 − 𝐶))) = (𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (((((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶)) · (𝐺‘𝑧)) + ((((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶)) · (𝐹‘𝐶))))) |
| 157 | 156 | oveq1d 5937 |
. . 3
⊢ (𝜑 → ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ ((((𝐹 ∘𝑓 · 𝐺)‘𝑧) − ((𝐹 ∘𝑓 · 𝐺)‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶) = ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (((((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶)) · (𝐺‘𝑧)) + ((((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶)) · (𝐹‘𝐶)))) limℂ 𝐶)) |
| 158 | 101, 157 | eleqtrrd 2276 |
. 2
⊢ (𝜑 → ((𝐾 · (𝐺‘𝐶)) + (𝐿 · (𝐹‘𝐶))) ∈ ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ ((((𝐹 ∘𝑓 · 𝐺)‘𝑧) − ((𝐹 ∘𝑓 · 𝐺)‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)) |
| 159 | | eqid 2196 |
. . 3
⊢ (𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ ((((𝐹 ∘𝑓 · 𝐺)‘𝑧) − ((𝐹 ∘𝑓 · 𝐺)‘𝐶)) / (𝑧 − 𝐶))) = (𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ ((((𝐹 ∘𝑓 · 𝐺)‘𝑧) − ((𝐹 ∘𝑓 · 𝐺)‘𝐶)) / (𝑧 − 𝐶))) |
| 160 | | mulcl 8006 |
. . . . 5
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) |
| 161 | 160 | adantl 277 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ) |
| 162 | | inidm 3372 |
. . . 4
⊢ (𝑋 ∩ 𝑋) = 𝑋 |
| 163 | 161, 6, 25, 135, 135, 162 | off 6148 |
. . 3
⊢ (𝜑 → (𝐹 ∘𝑓 · 𝐺):𝑋⟶ℂ) |
| 164 | 2, 3, 159, 5, 163, 7 | eldvap 14918 |
. 2
⊢ (𝜑 → (𝐶(𝑆 D (𝐹 ∘𝑓 · 𝐺))((𝐾 · (𝐺‘𝐶)) + (𝐿 · (𝐹‘𝐶))) ↔ (𝐶 ∈ ((int‘(𝐽 ↾t 𝑆))‘𝑋) ∧ ((𝐾 · (𝐺‘𝐶)) + (𝐿 · (𝐹‘𝐶))) ∈ ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ ((((𝐹 ∘𝑓 · 𝐺)‘𝑧) − ((𝐹 ∘𝑓 · 𝐺)‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)))) |
| 165 | 10, 158, 164 | mpbir2and 946 |
1
⊢ (𝜑 → 𝐶(𝑆 D (𝐹 ∘𝑓 · 𝐺))((𝐾 · (𝐺‘𝐶)) + (𝐿 · (𝐹‘𝐶)))) |