ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvmulxxbr GIF version

Theorem dvmulxxbr 15207
Description: The product rule for derivatives at a point. For the (simpler but more limited) function version, see dvmulxx 15209. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 1-Dec-2023.)
Hypotheses
Ref Expression
dvadd.f (𝜑𝐹:𝑋⟶ℂ)
dvadd.x (𝜑𝑋𝑆)
dvaddxx.g (𝜑𝐺:𝑋⟶ℂ)
dvaddbr.s (𝜑𝑆 ⊆ ℂ)
dvadd.bf (𝜑𝐶(𝑆 D 𝐹)𝐾)
dvadd.bg (𝜑𝐶(𝑆 D 𝐺)𝐿)
dvaddcntop.j 𝐽 = (MetOpen‘(abs ∘ − ))
Assertion
Ref Expression
dvmulxxbr (𝜑𝐶(𝑆 D (𝐹𝑓 · 𝐺))((𝐾 · (𝐺𝐶)) + (𝐿 · (𝐹𝐶))))

Proof of Theorem dvmulxxbr
Dummy variables 𝑦 𝑧 𝑥 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvadd.bf . . . 4 (𝜑𝐶(𝑆 D 𝐹)𝐾)
2 eqid 2205 . . . . 5 (𝐽t 𝑆) = (𝐽t 𝑆)
3 dvaddcntop.j . . . . 5 𝐽 = (MetOpen‘(abs ∘ − ))
4 eqid 2205 . . . . 5 (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) = (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)))
5 dvaddbr.s . . . . 5 (𝜑𝑆 ⊆ ℂ)
6 dvadd.f . . . . 5 (𝜑𝐹:𝑋⟶ℂ)
7 dvadd.x . . . . 5 (𝜑𝑋𝑆)
82, 3, 4, 5, 6, 7eldvap 15187 . . . 4 (𝜑 → (𝐶(𝑆 D 𝐹)𝐾 ↔ (𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑋) ∧ 𝐾 ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) lim 𝐶))))
91, 8mpbid 147 . . 3 (𝜑 → (𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑋) ∧ 𝐾 ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) lim 𝐶)))
109simpld 112 . 2 (𝜑𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑋))
117, 5sstrd 3203 . . . . . 6 (𝜑𝑋 ⊆ ℂ)
123cntoptopon 15037 . . . . . . . . . 10 𝐽 ∈ (TopOn‘ℂ)
13 resttopon 14676 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐽t 𝑆) ∈ (TopOn‘𝑆))
1412, 5, 13sylancr 414 . . . . . . . . 9 (𝜑 → (𝐽t 𝑆) ∈ (TopOn‘𝑆))
15 topontop 14519 . . . . . . . . 9 ((𝐽t 𝑆) ∈ (TopOn‘𝑆) → (𝐽t 𝑆) ∈ Top)
1614, 15syl 14 . . . . . . . 8 (𝜑 → (𝐽t 𝑆) ∈ Top)
17 toponuni 14520 . . . . . . . . . 10 ((𝐽t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = (𝐽t 𝑆))
1814, 17syl 14 . . . . . . . . 9 (𝜑𝑆 = (𝐽t 𝑆))
197, 18sseqtrd 3231 . . . . . . . 8 (𝜑𝑋 (𝐽t 𝑆))
20 eqid 2205 . . . . . . . . 9 (𝐽t 𝑆) = (𝐽t 𝑆)
2120ntrss2 14626 . . . . . . . 8 (((𝐽t 𝑆) ∈ Top ∧ 𝑋 (𝐽t 𝑆)) → ((int‘(𝐽t 𝑆))‘𝑋) ⊆ 𝑋)
2216, 19, 21syl2anc 411 . . . . . . 7 (𝜑 → ((int‘(𝐽t 𝑆))‘𝑋) ⊆ 𝑋)
2322, 10sseldd 3194 . . . . . 6 (𝜑𝐶𝑋)
246, 11, 23dvlemap 15185 . . . . 5 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) ∈ ℂ)
25 dvaddxx.g . . . . . . 7 (𝜑𝐺:𝑋⟶ℂ)
2625adantr 276 . . . . . 6 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝐺:𝑋⟶ℂ)
27 elrabi 2926 . . . . . . 7 (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} → 𝑧𝑋)
2827adantl 277 . . . . . 6 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝑧𝑋)
2926, 28ffvelcdmd 5718 . . . . 5 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝐺𝑧) ∈ ℂ)
3024, 29mulcld 8095 . . . 4 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) · (𝐺𝑧)) ∈ ℂ)
3125, 11, 23dvlemap 15185 . . . . 5 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) ∈ ℂ)
326, 23ffvelcdmd 5718 . . . . . 6 (𝜑 → (𝐹𝐶) ∈ ℂ)
3332adantr 276 . . . . 5 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝐹𝐶) ∈ ℂ)
3431, 33mulcld 8095 . . . 4 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) · (𝐹𝐶)) ∈ ℂ)
35 ssidd 3214 . . . 4 (𝜑 → ℂ ⊆ ℂ)
36 txtopon 14767 . . . . . 6 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝐽 ∈ (TopOn‘ℂ)) → (𝐽 ×t 𝐽) ∈ (TopOn‘(ℂ × ℂ)))
3712, 12, 36mp2an 426 . . . . 5 (𝐽 ×t 𝐽) ∈ (TopOn‘(ℂ × ℂ))
3837toponrestid 14526 . . . 4 (𝐽 ×t 𝐽) = ((𝐽 ×t 𝐽) ↾t (ℂ × ℂ))
399simprd 114 . . . . 5 (𝜑𝐾 ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) lim 𝐶))
40 cnex 8051 . . . . . . . . . . . . 13 ℂ ∈ V
4140a1i 9 . . . . . . . . . . . 12 (𝜑 → ℂ ∈ V)
4241, 5ssexd 4185 . . . . . . . . . . . 12 (𝜑𝑆 ∈ V)
43 elpm2r 6755 . . . . . . . . . . . 12 (((ℂ ∈ V ∧ 𝑆 ∈ V) ∧ (𝐺:𝑋⟶ℂ ∧ 𝑋𝑆)) → 𝐺 ∈ (ℂ ↑pm 𝑆))
4441, 42, 25, 7, 43syl22anc 1251 . . . . . . . . . . 11 (𝜑𝐺 ∈ (ℂ ↑pm 𝑆))
45 reldvg 15184 . . . . . . . . . . 11 ((𝑆 ⊆ ℂ ∧ 𝐺 ∈ (ℂ ↑pm 𝑆)) → Rel (𝑆 D 𝐺))
465, 44, 45syl2anc 411 . . . . . . . . . 10 (𝜑 → Rel (𝑆 D 𝐺))
47 dvadd.bg . . . . . . . . . 10 (𝜑𝐶(𝑆 D 𝐺)𝐿)
48 releldm 4914 . . . . . . . . . 10 ((Rel (𝑆 D 𝐺) ∧ 𝐶(𝑆 D 𝐺)𝐿) → 𝐶 ∈ dom (𝑆 D 𝐺))
4946, 47, 48syl2anc 411 . . . . . . . . 9 (𝜑𝐶 ∈ dom (𝑆 D 𝐺))
50 eqid 2205 . . . . . . . . . 10 (𝐽t 𝑋) = (𝐽t 𝑋)
5150, 3dvcnp2cntop 15204 . . . . . . . . 9 (((𝑆 ⊆ ℂ ∧ 𝐺:𝑋⟶ℂ ∧ 𝑋𝑆) ∧ 𝐶 ∈ dom (𝑆 D 𝐺)) → 𝐺 ∈ (((𝐽t 𝑋) CnP 𝐽)‘𝐶))
525, 25, 7, 49, 51syl31anc 1253 . . . . . . . 8 (𝜑𝐺 ∈ (((𝐽t 𝑋) CnP 𝐽)‘𝐶))
533, 50cnplimccntop 15175 . . . . . . . . 9 ((𝑋 ⊆ ℂ ∧ 𝐶𝑋) → (𝐺 ∈ (((𝐽t 𝑋) CnP 𝐽)‘𝐶) ↔ (𝐺:𝑋⟶ℂ ∧ (𝐺𝐶) ∈ (𝐺 lim 𝐶))))
5411, 23, 53syl2anc 411 . . . . . . . 8 (𝜑 → (𝐺 ∈ (((𝐽t 𝑋) CnP 𝐽)‘𝐶) ↔ (𝐺:𝑋⟶ℂ ∧ (𝐺𝐶) ∈ (𝐺 lim 𝐶))))
5552, 54mpbid 147 . . . . . . 7 (𝜑 → (𝐺:𝑋⟶ℂ ∧ (𝐺𝐶) ∈ (𝐺 lim 𝐶)))
5655simprd 114 . . . . . 6 (𝜑 → (𝐺𝐶) ∈ (𝐺 lim 𝐶))
5725, 11limcdifap 15167 . . . . . . 7 (𝜑 → (𝐺 lim 𝐶) = ((𝐺 ↾ {𝑤𝑋𝑤 # 𝐶}) lim 𝐶))
58 ssrab2 3278 . . . . . . . . . 10 {𝑤𝑋𝑤 # 𝐶} ⊆ 𝑋
5958a1i 9 . . . . . . . . 9 (𝜑 → {𝑤𝑋𝑤 # 𝐶} ⊆ 𝑋)
6025, 59feqresmpt 5635 . . . . . . . 8 (𝜑 → (𝐺 ↾ {𝑤𝑋𝑤 # 𝐶}) = (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (𝐺𝑧)))
6160oveq1d 5961 . . . . . . 7 (𝜑 → ((𝐺 ↾ {𝑤𝑋𝑤 # 𝐶}) lim 𝐶) = ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (𝐺𝑧)) lim 𝐶))
6257, 61eqtrd 2238 . . . . . 6 (𝜑 → (𝐺 lim 𝐶) = ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (𝐺𝑧)) lim 𝐶))
6356, 62eleqtrd 2284 . . . . 5 (𝜑 → (𝐺𝐶) ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (𝐺𝑧)) lim 𝐶))
643mulcncntop 15069 . . . . . 6 · ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
655, 6, 7dvcl 15188 . . . . . . . 8 ((𝜑𝐶(𝑆 D 𝐹)𝐾) → 𝐾 ∈ ℂ)
661, 65mpdan 421 . . . . . . 7 (𝜑𝐾 ∈ ℂ)
6725, 23ffvelcdmd 5718 . . . . . . 7 (𝜑 → (𝐺𝐶) ∈ ℂ)
6866, 67opelxpd 4709 . . . . . 6 (𝜑 → ⟨𝐾, (𝐺𝐶)⟩ ∈ (ℂ × ℂ))
6937toponunii 14522 . . . . . . 7 (ℂ × ℂ) = (𝐽 ×t 𝐽)
7069cncnpi 14733 . . . . . 6 (( · ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ∧ ⟨𝐾, (𝐺𝐶)⟩ ∈ (ℂ × ℂ)) → · ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨𝐾, (𝐺𝐶)⟩))
7164, 68, 70sylancr 414 . . . . 5 (𝜑 → · ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨𝐾, (𝐺𝐶)⟩))
7224, 29, 35, 35, 3, 38, 39, 63, 71limccnp2cntop 15182 . . . 4 (𝜑 → (𝐾 · (𝐺𝐶)) ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) · (𝐺𝑧))) lim 𝐶))
73 eqid 2205 . . . . . . . 8 (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))
742, 3, 73, 5, 25, 7eldvap 15187 . . . . . . 7 (𝜑 → (𝐶(𝑆 D 𝐺)𝐿 ↔ (𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑋) ∧ 𝐿 ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))))
7547, 74mpbid 147 . . . . . 6 (𝜑 → (𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑋) ∧ 𝐿 ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶)))
7675simprd 114 . . . . 5 (𝜑𝐿 ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))
77 cncfmptc 15101 . . . . . . . 8 (((𝐹𝐶) ∈ ℂ ∧ 𝑋 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑧𝑋 ↦ (𝐹𝐶)) ∈ (𝑋cn→ℂ))
7832, 11, 35, 77syl3anc 1250 . . . . . . 7 (𝜑 → (𝑧𝑋 ↦ (𝐹𝐶)) ∈ (𝑋cn→ℂ))
79 eqidd 2206 . . . . . . 7 (𝑧 = 𝐶 → (𝐹𝐶) = (𝐹𝐶))
8078, 23, 79cnmptlimc 15179 . . . . . 6 (𝜑 → (𝐹𝐶) ∈ ((𝑧𝑋 ↦ (𝐹𝐶)) lim 𝐶))
8132adantr 276 . . . . . . . . 9 ((𝜑𝑧𝑋) → (𝐹𝐶) ∈ ℂ)
8281fmpttd 5737 . . . . . . . 8 (𝜑 → (𝑧𝑋 ↦ (𝐹𝐶)):𝑋⟶ℂ)
8382, 11limcdifap 15167 . . . . . . 7 (𝜑 → ((𝑧𝑋 ↦ (𝐹𝐶)) lim 𝐶) = (((𝑧𝑋 ↦ (𝐹𝐶)) ↾ {𝑤𝑋𝑤 # 𝐶}) lim 𝐶))
84 resmpt 5008 . . . . . . . . 9 ({𝑤𝑋𝑤 # 𝐶} ⊆ 𝑋 → ((𝑧𝑋 ↦ (𝐹𝐶)) ↾ {𝑤𝑋𝑤 # 𝐶}) = (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (𝐹𝐶)))
8558, 84mp1i 10 . . . . . . . 8 (𝜑 → ((𝑧𝑋 ↦ (𝐹𝐶)) ↾ {𝑤𝑋𝑤 # 𝐶}) = (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (𝐹𝐶)))
8685oveq1d 5961 . . . . . . 7 (𝜑 → (((𝑧𝑋 ↦ (𝐹𝐶)) ↾ {𝑤𝑋𝑤 # 𝐶}) lim 𝐶) = ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (𝐹𝐶)) lim 𝐶))
8783, 86eqtrd 2238 . . . . . 6 (𝜑 → ((𝑧𝑋 ↦ (𝐹𝐶)) lim 𝐶) = ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (𝐹𝐶)) lim 𝐶))
8880, 87eleqtrd 2284 . . . . 5 (𝜑 → (𝐹𝐶) ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (𝐹𝐶)) lim 𝐶))
895, 25, 7dvcl 15188 . . . . . . . 8 ((𝜑𝐶(𝑆 D 𝐺)𝐿) → 𝐿 ∈ ℂ)
9047, 89mpdan 421 . . . . . . 7 (𝜑𝐿 ∈ ℂ)
9190, 32opelxpd 4709 . . . . . 6 (𝜑 → ⟨𝐿, (𝐹𝐶)⟩ ∈ (ℂ × ℂ))
9269cncnpi 14733 . . . . . 6 (( · ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ∧ ⟨𝐿, (𝐹𝐶)⟩ ∈ (ℂ × ℂ)) → · ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨𝐿, (𝐹𝐶)⟩))
9364, 91, 92sylancr 414 . . . . 5 (𝜑 → · ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨𝐿, (𝐹𝐶)⟩))
9431, 33, 35, 35, 3, 38, 76, 88, 93limccnp2cntop 15182 . . . 4 (𝜑 → (𝐿 · (𝐹𝐶)) ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) · (𝐹𝐶))) lim 𝐶))
953addcncntop 15067 . . . . 5 + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
9666, 67mulcld 8095 . . . . . 6 (𝜑 → (𝐾 · (𝐺𝐶)) ∈ ℂ)
9790, 32mulcld 8095 . . . . . 6 (𝜑 → (𝐿 · (𝐹𝐶)) ∈ ℂ)
9896, 97opelxpd 4709 . . . . 5 (𝜑 → ⟨(𝐾 · (𝐺𝐶)), (𝐿 · (𝐹𝐶))⟩ ∈ (ℂ × ℂ))
9969cncnpi 14733 . . . . 5 (( + ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ∧ ⟨(𝐾 · (𝐺𝐶)), (𝐿 · (𝐹𝐶))⟩ ∈ (ℂ × ℂ)) → + ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨(𝐾 · (𝐺𝐶)), (𝐿 · (𝐹𝐶))⟩))
10095, 98, 99sylancr 414 . . . 4 (𝜑 → + ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨(𝐾 · (𝐺𝐶)), (𝐿 · (𝐹𝐶))⟩))
10130, 34, 35, 35, 3, 38, 72, 94, 100limccnp2cntop 15182 . . 3 (𝜑 → ((𝐾 · (𝐺𝐶)) + (𝐿 · (𝐹𝐶))) ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) · (𝐺𝑧)) + ((((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) · (𝐹𝐶)))) lim 𝐶))
1026adantr 276 . . . . . . . . . 10 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝐹:𝑋⟶ℂ)
103102, 28ffvelcdmd 5718 . . . . . . . . 9 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝐹𝑧) ∈ ℂ)
104103, 33subcld 8385 . . . . . . . 8 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((𝐹𝑧) − (𝐹𝐶)) ∈ ℂ)
105104, 29mulcld 8095 . . . . . . 7 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (((𝐹𝑧) − (𝐹𝐶)) · (𝐺𝑧)) ∈ ℂ)
10667adantr 276 . . . . . . . . 9 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝐺𝐶) ∈ ℂ)
10729, 106subcld 8385 . . . . . . . 8 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((𝐺𝑧) − (𝐺𝐶)) ∈ ℂ)
108107, 33mulcld 8095 . . . . . . 7 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶)) ∈ ℂ)
10911adantr 276 . . . . . . . . 9 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝑋 ⊆ ℂ)
110109, 28sseldd 3194 . . . . . . . 8 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝑧 ∈ ℂ)
11111, 23sseldd 3194 . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
112111adantr 276 . . . . . . . 8 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝐶 ∈ ℂ)
113110, 112subcld 8385 . . . . . . 7 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝑧𝐶) ∈ ℂ)
114 breq1 4048 . . . . . . . . . . 11 (𝑤 = 𝑧 → (𝑤 # 𝐶𝑧 # 𝐶))
115114elrab 2929 . . . . . . . . . 10 (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↔ (𝑧𝑋𝑧 # 𝐶))
116115simprbi 275 . . . . . . . . 9 (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} → 𝑧 # 𝐶)
117116adantl 277 . . . . . . . 8 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝑧 # 𝐶)
118110, 112, 117subap0d 8719 . . . . . . 7 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝑧𝐶) # 0)
119105, 108, 113, 118divdirapd 8904 . . . . . 6 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (((((𝐹𝑧) − (𝐹𝐶)) · (𝐺𝑧)) + (((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶))) / (𝑧𝐶)) = (((((𝐹𝑧) − (𝐹𝐶)) · (𝐺𝑧)) / (𝑧𝐶)) + ((((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶)) / (𝑧𝐶))))
120103, 29mulcld 8095 . . . . . . . . 9 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((𝐹𝑧) · (𝐺𝑧)) ∈ ℂ)
12133, 29mulcld 8095 . . . . . . . . 9 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((𝐹𝐶) · (𝐺𝑧)) ∈ ℂ)
12233, 106mulcld 8095 . . . . . . . . 9 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((𝐹𝐶) · (𝐺𝐶)) ∈ ℂ)
123120, 121, 122npncand 8409 . . . . . . . 8 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((((𝐹𝑧) · (𝐺𝑧)) − ((𝐹𝐶) · (𝐺𝑧))) + (((𝐹𝐶) · (𝐺𝑧)) − ((𝐹𝐶) · (𝐺𝐶)))) = (((𝐹𝑧) · (𝐺𝑧)) − ((𝐹𝐶) · (𝐺𝐶))))
124103, 33, 29subdird 8489 . . . . . . . . 9 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (((𝐹𝑧) − (𝐹𝐶)) · (𝐺𝑧)) = (((𝐹𝑧) · (𝐺𝑧)) − ((𝐹𝐶) · (𝐺𝑧))))
125107, 33mulcomd 8096 . . . . . . . . . 10 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶)) = ((𝐹𝐶) · ((𝐺𝑧) − (𝐺𝐶))))
12633, 29, 106subdid 8488 . . . . . . . . . 10 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((𝐹𝐶) · ((𝐺𝑧) − (𝐺𝐶))) = (((𝐹𝐶) · (𝐺𝑧)) − ((𝐹𝐶) · (𝐺𝐶))))
127125, 126eqtrd 2238 . . . . . . . . 9 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶)) = (((𝐹𝐶) · (𝐺𝑧)) − ((𝐹𝐶) · (𝐺𝐶))))
128124, 127oveq12d 5964 . . . . . . . 8 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((((𝐹𝑧) − (𝐹𝐶)) · (𝐺𝑧)) + (((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶))) = ((((𝐹𝑧) · (𝐺𝑧)) − ((𝐹𝐶) · (𝐺𝑧))) + (((𝐹𝐶) · (𝐺𝑧)) − ((𝐹𝐶) · (𝐺𝐶)))))
12928, 28elind 3358 . . . . . . . . . 10 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝑧 ∈ (𝑋𝑋))
1306ffnd 5428 . . . . . . . . . . . 12 (𝜑𝐹 Fn 𝑋)
131130adantr 276 . . . . . . . . . . 11 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝐹 Fn 𝑋)
13225ffnd 5428 . . . . . . . . . . . 12 (𝜑𝐺 Fn 𝑋)
133132adantr 276 . . . . . . . . . . 11 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝐺 Fn 𝑋)
134 ssexg 4184 . . . . . . . . . . . . 13 ((𝑋 ⊆ ℂ ∧ ℂ ∈ V) → 𝑋 ∈ V)
13511, 40, 134sylancl 413 . . . . . . . . . . . 12 (𝜑𝑋 ∈ V)
136135adantr 276 . . . . . . . . . . 11 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝑋 ∈ V)
137 eqid 2205 . . . . . . . . . . 11 (𝑋𝑋) = (𝑋𝑋)
138 eqidd 2206 . . . . . . . . . . 11 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝑧𝑋) → (𝐹𝑧) = (𝐹𝑧))
139 eqidd 2206 . . . . . . . . . . 11 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝑧𝑋) → (𝐺𝑧) = (𝐺𝑧))
140120adantr 276 . . . . . . . . . . 11 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝑧 ∈ (𝑋𝑋)) → ((𝐹𝑧) · (𝐺𝑧)) ∈ ℂ)
141131, 133, 136, 136, 137, 138, 139, 140ofvalg 6170 . . . . . . . . . 10 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝑧 ∈ (𝑋𝑋)) → ((𝐹𝑓 · 𝐺)‘𝑧) = ((𝐹𝑧) · (𝐺𝑧)))
142129, 141mpdan 421 . . . . . . . . 9 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((𝐹𝑓 · 𝐺)‘𝑧) = ((𝐹𝑧) · (𝐺𝑧)))
14323, 23elind 3358 . . . . . . . . . 10 (𝜑𝐶 ∈ (𝑋𝑋))
144 eqidd 2206 . . . . . . . . . . 11 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝐶𝑋) → (𝐹𝐶) = (𝐹𝐶))
145 eqidd 2206 . . . . . . . . . . 11 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝐶𝑋) → (𝐺𝐶) = (𝐺𝐶))
146122adantr 276 . . . . . . . . . . 11 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝐶 ∈ (𝑋𝑋)) → ((𝐹𝐶) · (𝐺𝐶)) ∈ ℂ)
147131, 133, 136, 136, 137, 144, 145, 146ofvalg 6170 . . . . . . . . . 10 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝐶 ∈ (𝑋𝑋)) → ((𝐹𝑓 · 𝐺)‘𝐶) = ((𝐹𝐶) · (𝐺𝐶)))
148143, 147mpidan 423 . . . . . . . . 9 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((𝐹𝑓 · 𝐺)‘𝐶) = ((𝐹𝐶) · (𝐺𝐶)))
149142, 148oveq12d 5964 . . . . . . . 8 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (((𝐹𝑓 · 𝐺)‘𝑧) − ((𝐹𝑓 · 𝐺)‘𝐶)) = (((𝐹𝑧) · (𝐺𝑧)) − ((𝐹𝐶) · (𝐺𝐶))))
150123, 128, 1493eqtr4d 2248 . . . . . . 7 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((((𝐹𝑧) − (𝐹𝐶)) · (𝐺𝑧)) + (((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶))) = (((𝐹𝑓 · 𝐺)‘𝑧) − ((𝐹𝑓 · 𝐺)‘𝐶)))
151150oveq1d 5961 . . . . . 6 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (((((𝐹𝑧) − (𝐹𝐶)) · (𝐺𝑧)) + (((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶))) / (𝑧𝐶)) = ((((𝐹𝑓 · 𝐺)‘𝑧) − ((𝐹𝑓 · 𝐺)‘𝐶)) / (𝑧𝐶)))
152104, 29, 113, 118div23apd 8903 . . . . . . 7 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((((𝐹𝑧) − (𝐹𝐶)) · (𝐺𝑧)) / (𝑧𝐶)) = ((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) · (𝐺𝑧)))
153107, 33, 113, 118div23apd 8903 . . . . . . 7 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶)) / (𝑧𝐶)) = ((((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) · (𝐹𝐶)))
154152, 153oveq12d 5964 . . . . . 6 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (((((𝐹𝑧) − (𝐹𝐶)) · (𝐺𝑧)) / (𝑧𝐶)) + ((((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶)) / (𝑧𝐶))) = (((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) · (𝐺𝑧)) + ((((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) · (𝐹𝐶))))
155119, 151, 1543eqtr3d 2246 . . . . 5 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((((𝐹𝑓 · 𝐺)‘𝑧) − ((𝐹𝑓 · 𝐺)‘𝐶)) / (𝑧𝐶)) = (((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) · (𝐺𝑧)) + ((((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) · (𝐹𝐶))))
156155mpteq2dva 4135 . . . 4 (𝜑 → (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((𝐹𝑓 · 𝐺)‘𝑧) − ((𝐹𝑓 · 𝐺)‘𝐶)) / (𝑧𝐶))) = (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) · (𝐺𝑧)) + ((((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) · (𝐹𝐶)))))
157156oveq1d 5961 . . 3 (𝜑 → ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((𝐹𝑓 · 𝐺)‘𝑧) − ((𝐹𝑓 · 𝐺)‘𝐶)) / (𝑧𝐶))) lim 𝐶) = ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) · (𝐺𝑧)) + ((((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) · (𝐹𝐶)))) lim 𝐶))
158101, 157eleqtrrd 2285 . 2 (𝜑 → ((𝐾 · (𝐺𝐶)) + (𝐿 · (𝐹𝐶))) ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((𝐹𝑓 · 𝐺)‘𝑧) − ((𝐹𝑓 · 𝐺)‘𝐶)) / (𝑧𝐶))) lim 𝐶))
159 eqid 2205 . . 3 (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((𝐹𝑓 · 𝐺)‘𝑧) − ((𝐹𝑓 · 𝐺)‘𝐶)) / (𝑧𝐶))) = (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((𝐹𝑓 · 𝐺)‘𝑧) − ((𝐹𝑓 · 𝐺)‘𝐶)) / (𝑧𝐶)))
160 mulcl 8054 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
161160adantl 277 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ)
162 inidm 3382 . . . 4 (𝑋𝑋) = 𝑋
163161, 6, 25, 135, 135, 162off 6173 . . 3 (𝜑 → (𝐹𝑓 · 𝐺):𝑋⟶ℂ)
1642, 3, 159, 5, 163, 7eldvap 15187 . 2 (𝜑 → (𝐶(𝑆 D (𝐹𝑓 · 𝐺))((𝐾 · (𝐺𝐶)) + (𝐿 · (𝐹𝐶))) ↔ (𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑋) ∧ ((𝐾 · (𝐺𝐶)) + (𝐿 · (𝐹𝐶))) ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((𝐹𝑓 · 𝐺)‘𝑧) − ((𝐹𝑓 · 𝐺)‘𝐶)) / (𝑧𝐶))) lim 𝐶))))
16510, 158, 164mpbir2and 947 1 (𝜑𝐶(𝑆 D (𝐹𝑓 · 𝐺))((𝐾 · (𝐺𝐶)) + (𝐿 · (𝐹𝐶))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2176  {crab 2488  Vcvv 2772  cin 3165  wss 3166  cop 3636   cuni 3850   class class class wbr 4045  cmpt 4106   × cxp 4674  dom cdm 4676  cres 4678  ccom 4680  Rel wrel 4681   Fn wfn 5267  wf 5268  cfv 5272  (class class class)co 5946  𝑓 cof 6158  pm cpm 6738  cc 7925   + caddc 7930   · cmul 7932  cmin 8245   # cap 8656   / cdiv 8747  abscabs 11341  t crest 13104  MetOpencmopn 14336  Topctop 14502  TopOnctopon 14515  intcnt 14598   Cn ccn 14690   CnP ccnp 14691   ×t ctx 14757  cnccncf 15075   lim climc 15159   D cdv 15160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045  ax-arch 8046  ax-caucvg 8047  ax-addf 8049  ax-mulf 8050
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-isom 5281  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-of 6160  df-1st 6228  df-2nd 6229  df-recs 6393  df-frec 6479  df-map 6739  df-pm 6740  df-sup 7088  df-inf 7089  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-div 8748  df-inn 9039  df-2 9097  df-3 9098  df-4 9099  df-n0 9298  df-z 9375  df-uz 9651  df-q 9743  df-rp 9778  df-xneg 9896  df-xadd 9897  df-seqfrec 10595  df-exp 10686  df-cj 11186  df-re 11187  df-im 11188  df-rsqrt 11342  df-abs 11343  df-rest 13106  df-topgen 13125  df-psmet 14338  df-xmet 14339  df-met 14340  df-bl 14341  df-mopn 14342  df-top 14503  df-topon 14516  df-bases 14548  df-ntr 14601  df-cn 14693  df-cnp 14694  df-tx 14758  df-cncf 15076  df-limced 15161  df-dvap 15162
This theorem is referenced by:  dvmulxx  15209  dvimulf  15211  dvef  15232
  Copyright terms: Public domain W3C validator