ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvmulxxbr GIF version

Theorem dvmulxxbr 12718
Description: The product rule for derivatives at a point. For the (simpler but more limited) function version, see dvmulxx 12720. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 1-Dec-2023.)
Hypotheses
Ref Expression
dvadd.f (𝜑𝐹:𝑋⟶ℂ)
dvadd.x (𝜑𝑋𝑆)
dvaddxx.g (𝜑𝐺:𝑋⟶ℂ)
dvaddbr.s (𝜑𝑆 ⊆ ℂ)
dvadd.bf (𝜑𝐶(𝑆 D 𝐹)𝐾)
dvadd.bg (𝜑𝐶(𝑆 D 𝐺)𝐿)
dvaddcntop.j 𝐽 = (MetOpen‘(abs ∘ − ))
Assertion
Ref Expression
dvmulxxbr (𝜑𝐶(𝑆 D (𝐹𝑓 · 𝐺))((𝐾 · (𝐺𝐶)) + (𝐿 · (𝐹𝐶))))

Proof of Theorem dvmulxxbr
Dummy variables 𝑦 𝑧 𝑥 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvadd.bf . . . 4 (𝜑𝐶(𝑆 D 𝐹)𝐾)
2 eqid 2115 . . . . 5 (𝐽t 𝑆) = (𝐽t 𝑆)
3 dvaddcntop.j . . . . 5 𝐽 = (MetOpen‘(abs ∘ − ))
4 eqid 2115 . . . . 5 (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) = (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)))
5 dvaddbr.s . . . . 5 (𝜑𝑆 ⊆ ℂ)
6 dvadd.f . . . . 5 (𝜑𝐹:𝑋⟶ℂ)
7 dvadd.x . . . . 5 (𝜑𝑋𝑆)
82, 3, 4, 5, 6, 7eldvap 12703 . . . 4 (𝜑 → (𝐶(𝑆 D 𝐹)𝐾 ↔ (𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑋) ∧ 𝐾 ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) lim 𝐶))))
91, 8mpbid 146 . . 3 (𝜑 → (𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑋) ∧ 𝐾 ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) lim 𝐶)))
109simpld 111 . 2 (𝜑𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑋))
117, 5sstrd 3075 . . . . . 6 (𝜑𝑋 ⊆ ℂ)
123cntoptopon 12596 . . . . . . . . . 10 𝐽 ∈ (TopOn‘ℂ)
13 resttopon 12235 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐽t 𝑆) ∈ (TopOn‘𝑆))
1412, 5, 13sylancr 408 . . . . . . . . 9 (𝜑 → (𝐽t 𝑆) ∈ (TopOn‘𝑆))
15 topontop 12076 . . . . . . . . 9 ((𝐽t 𝑆) ∈ (TopOn‘𝑆) → (𝐽t 𝑆) ∈ Top)
1614, 15syl 14 . . . . . . . 8 (𝜑 → (𝐽t 𝑆) ∈ Top)
17 toponuni 12077 . . . . . . . . . 10 ((𝐽t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = (𝐽t 𝑆))
1814, 17syl 14 . . . . . . . . 9 (𝜑𝑆 = (𝐽t 𝑆))
197, 18sseqtrd 3103 . . . . . . . 8 (𝜑𝑋 (𝐽t 𝑆))
20 eqid 2115 . . . . . . . . 9 (𝐽t 𝑆) = (𝐽t 𝑆)
2120ntrss2 12185 . . . . . . . 8 (((𝐽t 𝑆) ∈ Top ∧ 𝑋 (𝐽t 𝑆)) → ((int‘(𝐽t 𝑆))‘𝑋) ⊆ 𝑋)
2216, 19, 21syl2anc 406 . . . . . . 7 (𝜑 → ((int‘(𝐽t 𝑆))‘𝑋) ⊆ 𝑋)
2322, 10sseldd 3066 . . . . . 6 (𝜑𝐶𝑋)
246, 11, 23dvlemap 12701 . . . . 5 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) ∈ ℂ)
25 dvaddxx.g . . . . . . 7 (𝜑𝐺:𝑋⟶ℂ)
2625adantr 272 . . . . . 6 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝐺:𝑋⟶ℂ)
27 elrabi 2808 . . . . . . 7 (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} → 𝑧𝑋)
2827adantl 273 . . . . . 6 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝑧𝑋)
2926, 28ffvelrnd 5522 . . . . 5 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝐺𝑧) ∈ ℂ)
3024, 29mulcld 7750 . . . 4 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) · (𝐺𝑧)) ∈ ℂ)
3125, 11, 23dvlemap 12701 . . . . 5 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) ∈ ℂ)
326, 23ffvelrnd 5522 . . . . . 6 (𝜑 → (𝐹𝐶) ∈ ℂ)
3332adantr 272 . . . . 5 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝐹𝐶) ∈ ℂ)
3431, 33mulcld 7750 . . . 4 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) · (𝐹𝐶)) ∈ ℂ)
35 ssidd 3086 . . . 4 (𝜑 → ℂ ⊆ ℂ)
36 txtopon 12326 . . . . . 6 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝐽 ∈ (TopOn‘ℂ)) → (𝐽 ×t 𝐽) ∈ (TopOn‘(ℂ × ℂ)))
3712, 12, 36mp2an 420 . . . . 5 (𝐽 ×t 𝐽) ∈ (TopOn‘(ℂ × ℂ))
3837toponrestid 12083 . . . 4 (𝐽 ×t 𝐽) = ((𝐽 ×t 𝐽) ↾t (ℂ × ℂ))
399simprd 113 . . . . 5 (𝜑𝐾 ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) lim 𝐶))
40 cnex 7708 . . . . . . . . . . . . 13 ℂ ∈ V
4140a1i 9 . . . . . . . . . . . 12 (𝜑 → ℂ ∈ V)
4241, 5ssexd 4036 . . . . . . . . . . . 12 (𝜑𝑆 ∈ V)
43 elpm2r 6526 . . . . . . . . . . . 12 (((ℂ ∈ V ∧ 𝑆 ∈ V) ∧ (𝐺:𝑋⟶ℂ ∧ 𝑋𝑆)) → 𝐺 ∈ (ℂ ↑pm 𝑆))
4441, 42, 25, 7, 43syl22anc 1200 . . . . . . . . . . 11 (𝜑𝐺 ∈ (ℂ ↑pm 𝑆))
45 reldvg 12700 . . . . . . . . . . 11 ((𝑆 ⊆ ℂ ∧ 𝐺 ∈ (ℂ ↑pm 𝑆)) → Rel (𝑆 D 𝐺))
465, 44, 45syl2anc 406 . . . . . . . . . 10 (𝜑 → Rel (𝑆 D 𝐺))
47 dvadd.bg . . . . . . . . . 10 (𝜑𝐶(𝑆 D 𝐺)𝐿)
48 releldm 4742 . . . . . . . . . 10 ((Rel (𝑆 D 𝐺) ∧ 𝐶(𝑆 D 𝐺)𝐿) → 𝐶 ∈ dom (𝑆 D 𝐺))
4946, 47, 48syl2anc 406 . . . . . . . . 9 (𝜑𝐶 ∈ dom (𝑆 D 𝐺))
50 eqid 2115 . . . . . . . . . 10 (𝐽t 𝑋) = (𝐽t 𝑋)
5150, 3dvcnp2cntop 12715 . . . . . . . . 9 (((𝑆 ⊆ ℂ ∧ 𝐺:𝑋⟶ℂ ∧ 𝑋𝑆) ∧ 𝐶 ∈ dom (𝑆 D 𝐺)) → 𝐺 ∈ (((𝐽t 𝑋) CnP 𝐽)‘𝐶))
525, 25, 7, 49, 51syl31anc 1202 . . . . . . . 8 (𝜑𝐺 ∈ (((𝐽t 𝑋) CnP 𝐽)‘𝐶))
533, 50cnplimccntop 12691 . . . . . . . . 9 ((𝑋 ⊆ ℂ ∧ 𝐶𝑋) → (𝐺 ∈ (((𝐽t 𝑋) CnP 𝐽)‘𝐶) ↔ (𝐺:𝑋⟶ℂ ∧ (𝐺𝐶) ∈ (𝐺 lim 𝐶))))
5411, 23, 53syl2anc 406 . . . . . . . 8 (𝜑 → (𝐺 ∈ (((𝐽t 𝑋) CnP 𝐽)‘𝐶) ↔ (𝐺:𝑋⟶ℂ ∧ (𝐺𝐶) ∈ (𝐺 lim 𝐶))))
5552, 54mpbid 146 . . . . . . 7 (𝜑 → (𝐺:𝑋⟶ℂ ∧ (𝐺𝐶) ∈ (𝐺 lim 𝐶)))
5655simprd 113 . . . . . 6 (𝜑 → (𝐺𝐶) ∈ (𝐺 lim 𝐶))
5725, 11limcdifap 12683 . . . . . . 7 (𝜑 → (𝐺 lim 𝐶) = ((𝐺 ↾ {𝑤𝑋𝑤 # 𝐶}) lim 𝐶))
58 ssrab2 3150 . . . . . . . . . 10 {𝑤𝑋𝑤 # 𝐶} ⊆ 𝑋
5958a1i 9 . . . . . . . . 9 (𝜑 → {𝑤𝑋𝑤 # 𝐶} ⊆ 𝑋)
6025, 59feqresmpt 5441 . . . . . . . 8 (𝜑 → (𝐺 ↾ {𝑤𝑋𝑤 # 𝐶}) = (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (𝐺𝑧)))
6160oveq1d 5755 . . . . . . 7 (𝜑 → ((𝐺 ↾ {𝑤𝑋𝑤 # 𝐶}) lim 𝐶) = ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (𝐺𝑧)) lim 𝐶))
6257, 61eqtrd 2148 . . . . . 6 (𝜑 → (𝐺 lim 𝐶) = ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (𝐺𝑧)) lim 𝐶))
6356, 62eleqtrd 2194 . . . . 5 (𝜑 → (𝐺𝐶) ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (𝐺𝑧)) lim 𝐶))
643mulcncntop 12618 . . . . . 6 · ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
655, 6, 7dvcl 12704 . . . . . . . 8 ((𝜑𝐶(𝑆 D 𝐹)𝐾) → 𝐾 ∈ ℂ)
661, 65mpdan 415 . . . . . . 7 (𝜑𝐾 ∈ ℂ)
6725, 23ffvelrnd 5522 . . . . . . 7 (𝜑 → (𝐺𝐶) ∈ ℂ)
6866, 67opelxpd 4540 . . . . . 6 (𝜑 → ⟨𝐾, (𝐺𝐶)⟩ ∈ (ℂ × ℂ))
6937toponunii 12079 . . . . . . 7 (ℂ × ℂ) = (𝐽 ×t 𝐽)
7069cncnpi 12292 . . . . . 6 (( · ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ∧ ⟨𝐾, (𝐺𝐶)⟩ ∈ (ℂ × ℂ)) → · ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨𝐾, (𝐺𝐶)⟩))
7164, 68, 70sylancr 408 . . . . 5 (𝜑 → · ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨𝐾, (𝐺𝐶)⟩))
7224, 29, 35, 35, 3, 38, 39, 63, 71limccnp2cntop 12698 . . . 4 (𝜑 → (𝐾 · (𝐺𝐶)) ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) · (𝐺𝑧))) lim 𝐶))
73 eqid 2115 . . . . . . . 8 (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))
742, 3, 73, 5, 25, 7eldvap 12703 . . . . . . 7 (𝜑 → (𝐶(𝑆 D 𝐺)𝐿 ↔ (𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑋) ∧ 𝐿 ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))))
7547, 74mpbid 146 . . . . . 6 (𝜑 → (𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑋) ∧ 𝐿 ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶)))
7675simprd 113 . . . . 5 (𝜑𝐿 ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))
77 cncfmptc 12646 . . . . . . . 8 (((𝐹𝐶) ∈ ℂ ∧ 𝑋 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑧𝑋 ↦ (𝐹𝐶)) ∈ (𝑋cn→ℂ))
7832, 11, 35, 77syl3anc 1199 . . . . . . 7 (𝜑 → (𝑧𝑋 ↦ (𝐹𝐶)) ∈ (𝑋cn→ℂ))
79 eqidd 2116 . . . . . . 7 (𝑧 = 𝐶 → (𝐹𝐶) = (𝐹𝐶))
8078, 23, 79cnmptlimc 12695 . . . . . 6 (𝜑 → (𝐹𝐶) ∈ ((𝑧𝑋 ↦ (𝐹𝐶)) lim 𝐶))
8132adantr 272 . . . . . . . . 9 ((𝜑𝑧𝑋) → (𝐹𝐶) ∈ ℂ)
8281fmpttd 5541 . . . . . . . 8 (𝜑 → (𝑧𝑋 ↦ (𝐹𝐶)):𝑋⟶ℂ)
8382, 11limcdifap 12683 . . . . . . 7 (𝜑 → ((𝑧𝑋 ↦ (𝐹𝐶)) lim 𝐶) = (((𝑧𝑋 ↦ (𝐹𝐶)) ↾ {𝑤𝑋𝑤 # 𝐶}) lim 𝐶))
84 resmpt 4835 . . . . . . . . 9 ({𝑤𝑋𝑤 # 𝐶} ⊆ 𝑋 → ((𝑧𝑋 ↦ (𝐹𝐶)) ↾ {𝑤𝑋𝑤 # 𝐶}) = (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (𝐹𝐶)))
8558, 84mp1i 10 . . . . . . . 8 (𝜑 → ((𝑧𝑋 ↦ (𝐹𝐶)) ↾ {𝑤𝑋𝑤 # 𝐶}) = (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (𝐹𝐶)))
8685oveq1d 5755 . . . . . . 7 (𝜑 → (((𝑧𝑋 ↦ (𝐹𝐶)) ↾ {𝑤𝑋𝑤 # 𝐶}) lim 𝐶) = ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (𝐹𝐶)) lim 𝐶))
8783, 86eqtrd 2148 . . . . . 6 (𝜑 → ((𝑧𝑋 ↦ (𝐹𝐶)) lim 𝐶) = ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (𝐹𝐶)) lim 𝐶))
8880, 87eleqtrd 2194 . . . . 5 (𝜑 → (𝐹𝐶) ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (𝐹𝐶)) lim 𝐶))
895, 25, 7dvcl 12704 . . . . . . . 8 ((𝜑𝐶(𝑆 D 𝐺)𝐿) → 𝐿 ∈ ℂ)
9047, 89mpdan 415 . . . . . . 7 (𝜑𝐿 ∈ ℂ)
9190, 32opelxpd 4540 . . . . . 6 (𝜑 → ⟨𝐿, (𝐹𝐶)⟩ ∈ (ℂ × ℂ))
9269cncnpi 12292 . . . . . 6 (( · ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ∧ ⟨𝐿, (𝐹𝐶)⟩ ∈ (ℂ × ℂ)) → · ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨𝐿, (𝐹𝐶)⟩))
9364, 91, 92sylancr 408 . . . . 5 (𝜑 → · ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨𝐿, (𝐹𝐶)⟩))
9431, 33, 35, 35, 3, 38, 76, 88, 93limccnp2cntop 12698 . . . 4 (𝜑 → (𝐿 · (𝐹𝐶)) ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) · (𝐹𝐶))) lim 𝐶))
953addcncntop 12616 . . . . 5 + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
9666, 67mulcld 7750 . . . . . 6 (𝜑 → (𝐾 · (𝐺𝐶)) ∈ ℂ)
9790, 32mulcld 7750 . . . . . 6 (𝜑 → (𝐿 · (𝐹𝐶)) ∈ ℂ)
9896, 97opelxpd 4540 . . . . 5 (𝜑 → ⟨(𝐾 · (𝐺𝐶)), (𝐿 · (𝐹𝐶))⟩ ∈ (ℂ × ℂ))
9969cncnpi 12292 . . . . 5 (( + ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ∧ ⟨(𝐾 · (𝐺𝐶)), (𝐿 · (𝐹𝐶))⟩ ∈ (ℂ × ℂ)) → + ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨(𝐾 · (𝐺𝐶)), (𝐿 · (𝐹𝐶))⟩))
10095, 98, 99sylancr 408 . . . 4 (𝜑 → + ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨(𝐾 · (𝐺𝐶)), (𝐿 · (𝐹𝐶))⟩))
10130, 34, 35, 35, 3, 38, 72, 94, 100limccnp2cntop 12698 . . 3 (𝜑 → ((𝐾 · (𝐺𝐶)) + (𝐿 · (𝐹𝐶))) ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) · (𝐺𝑧)) + ((((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) · (𝐹𝐶)))) lim 𝐶))
1026adantr 272 . . . . . . . . . 10 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝐹:𝑋⟶ℂ)
103102, 28ffvelrnd 5522 . . . . . . . . 9 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝐹𝑧) ∈ ℂ)
104103, 33subcld 8037 . . . . . . . 8 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((𝐹𝑧) − (𝐹𝐶)) ∈ ℂ)
105104, 29mulcld 7750 . . . . . . 7 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (((𝐹𝑧) − (𝐹𝐶)) · (𝐺𝑧)) ∈ ℂ)
10667adantr 272 . . . . . . . . 9 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝐺𝐶) ∈ ℂ)
10729, 106subcld 8037 . . . . . . . 8 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((𝐺𝑧) − (𝐺𝐶)) ∈ ℂ)
108107, 33mulcld 7750 . . . . . . 7 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶)) ∈ ℂ)
10911adantr 272 . . . . . . . . 9 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝑋 ⊆ ℂ)
110109, 28sseldd 3066 . . . . . . . 8 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝑧 ∈ ℂ)
11111, 23sseldd 3066 . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
112111adantr 272 . . . . . . . 8 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝐶 ∈ ℂ)
113110, 112subcld 8037 . . . . . . 7 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝑧𝐶) ∈ ℂ)
114 breq1 3900 . . . . . . . . . . 11 (𝑤 = 𝑧 → (𝑤 # 𝐶𝑧 # 𝐶))
115114elrab 2811 . . . . . . . . . 10 (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↔ (𝑧𝑋𝑧 # 𝐶))
116115simprbi 271 . . . . . . . . 9 (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} → 𝑧 # 𝐶)
117116adantl 273 . . . . . . . 8 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝑧 # 𝐶)
118110, 112, 117subap0d 8368 . . . . . . 7 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝑧𝐶) # 0)
119105, 108, 113, 118divdirapd 8549 . . . . . 6 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (((((𝐹𝑧) − (𝐹𝐶)) · (𝐺𝑧)) + (((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶))) / (𝑧𝐶)) = (((((𝐹𝑧) − (𝐹𝐶)) · (𝐺𝑧)) / (𝑧𝐶)) + ((((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶)) / (𝑧𝐶))))
120103, 29mulcld 7750 . . . . . . . . 9 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((𝐹𝑧) · (𝐺𝑧)) ∈ ℂ)
12133, 29mulcld 7750 . . . . . . . . 9 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((𝐹𝐶) · (𝐺𝑧)) ∈ ℂ)
12233, 106mulcld 7750 . . . . . . . . 9 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((𝐹𝐶) · (𝐺𝐶)) ∈ ℂ)
123120, 121, 122npncand 8061 . . . . . . . 8 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((((𝐹𝑧) · (𝐺𝑧)) − ((𝐹𝐶) · (𝐺𝑧))) + (((𝐹𝐶) · (𝐺𝑧)) − ((𝐹𝐶) · (𝐺𝐶)))) = (((𝐹𝑧) · (𝐺𝑧)) − ((𝐹𝐶) · (𝐺𝐶))))
124103, 33, 29subdird 8141 . . . . . . . . 9 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (((𝐹𝑧) − (𝐹𝐶)) · (𝐺𝑧)) = (((𝐹𝑧) · (𝐺𝑧)) − ((𝐹𝐶) · (𝐺𝑧))))
125107, 33mulcomd 7751 . . . . . . . . . 10 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶)) = ((𝐹𝐶) · ((𝐺𝑧) − (𝐺𝐶))))
12633, 29, 106subdid 8140 . . . . . . . . . 10 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((𝐹𝐶) · ((𝐺𝑧) − (𝐺𝐶))) = (((𝐹𝐶) · (𝐺𝑧)) − ((𝐹𝐶) · (𝐺𝐶))))
127125, 126eqtrd 2148 . . . . . . . . 9 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶)) = (((𝐹𝐶) · (𝐺𝑧)) − ((𝐹𝐶) · (𝐺𝐶))))
128124, 127oveq12d 5758 . . . . . . . 8 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((((𝐹𝑧) − (𝐹𝐶)) · (𝐺𝑧)) + (((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶))) = ((((𝐹𝑧) · (𝐺𝑧)) − ((𝐹𝐶) · (𝐺𝑧))) + (((𝐹𝐶) · (𝐺𝑧)) − ((𝐹𝐶) · (𝐺𝐶)))))
12928, 28elind 3229 . . . . . . . . . 10 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝑧 ∈ (𝑋𝑋))
1306ffnd 5241 . . . . . . . . . . . 12 (𝜑𝐹 Fn 𝑋)
131130adantr 272 . . . . . . . . . . 11 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝐹 Fn 𝑋)
13225ffnd 5241 . . . . . . . . . . . 12 (𝜑𝐺 Fn 𝑋)
133132adantr 272 . . . . . . . . . . 11 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝐺 Fn 𝑋)
134 ssexg 4035 . . . . . . . . . . . . 13 ((𝑋 ⊆ ℂ ∧ ℂ ∈ V) → 𝑋 ∈ V)
13511, 40, 134sylancl 407 . . . . . . . . . . . 12 (𝜑𝑋 ∈ V)
136135adantr 272 . . . . . . . . . . 11 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝑋 ∈ V)
137 eqid 2115 . . . . . . . . . . 11 (𝑋𝑋) = (𝑋𝑋)
138 eqidd 2116 . . . . . . . . . . 11 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝑧𝑋) → (𝐹𝑧) = (𝐹𝑧))
139 eqidd 2116 . . . . . . . . . . 11 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝑧𝑋) → (𝐺𝑧) = (𝐺𝑧))
140120adantr 272 . . . . . . . . . . 11 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝑧 ∈ (𝑋𝑋)) → ((𝐹𝑧) · (𝐺𝑧)) ∈ ℂ)
141131, 133, 136, 136, 137, 138, 139, 140ofvalg 5957 . . . . . . . . . 10 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝑧 ∈ (𝑋𝑋)) → ((𝐹𝑓 · 𝐺)‘𝑧) = ((𝐹𝑧) · (𝐺𝑧)))
142129, 141mpdan 415 . . . . . . . . 9 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((𝐹𝑓 · 𝐺)‘𝑧) = ((𝐹𝑧) · (𝐺𝑧)))
14323, 23elind 3229 . . . . . . . . . 10 (𝜑𝐶 ∈ (𝑋𝑋))
144 eqidd 2116 . . . . . . . . . . 11 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝐶𝑋) → (𝐹𝐶) = (𝐹𝐶))
145 eqidd 2116 . . . . . . . . . . 11 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝐶𝑋) → (𝐺𝐶) = (𝐺𝐶))
146122adantr 272 . . . . . . . . . . 11 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝐶 ∈ (𝑋𝑋)) → ((𝐹𝐶) · (𝐺𝐶)) ∈ ℂ)
147131, 133, 136, 136, 137, 144, 145, 146ofvalg 5957 . . . . . . . . . 10 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝐶 ∈ (𝑋𝑋)) → ((𝐹𝑓 · 𝐺)‘𝐶) = ((𝐹𝐶) · (𝐺𝐶)))
148143, 147mpidan 417 . . . . . . . . 9 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((𝐹𝑓 · 𝐺)‘𝐶) = ((𝐹𝐶) · (𝐺𝐶)))
149142, 148oveq12d 5758 . . . . . . . 8 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (((𝐹𝑓 · 𝐺)‘𝑧) − ((𝐹𝑓 · 𝐺)‘𝐶)) = (((𝐹𝑧) · (𝐺𝑧)) − ((𝐹𝐶) · (𝐺𝐶))))
150123, 128, 1493eqtr4d 2158 . . . . . . 7 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((((𝐹𝑧) − (𝐹𝐶)) · (𝐺𝑧)) + (((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶))) = (((𝐹𝑓 · 𝐺)‘𝑧) − ((𝐹𝑓 · 𝐺)‘𝐶)))
151150oveq1d 5755 . . . . . 6 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (((((𝐹𝑧) − (𝐹𝐶)) · (𝐺𝑧)) + (((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶))) / (𝑧𝐶)) = ((((𝐹𝑓 · 𝐺)‘𝑧) − ((𝐹𝑓 · 𝐺)‘𝐶)) / (𝑧𝐶)))
152104, 29, 113, 118div23apd 8548 . . . . . . 7 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((((𝐹𝑧) − (𝐹𝐶)) · (𝐺𝑧)) / (𝑧𝐶)) = ((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) · (𝐺𝑧)))
153107, 33, 113, 118div23apd 8548 . . . . . . 7 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶)) / (𝑧𝐶)) = ((((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) · (𝐹𝐶)))
154152, 153oveq12d 5758 . . . . . 6 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (((((𝐹𝑧) − (𝐹𝐶)) · (𝐺𝑧)) / (𝑧𝐶)) + ((((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶)) / (𝑧𝐶))) = (((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) · (𝐺𝑧)) + ((((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) · (𝐹𝐶))))
155119, 151, 1543eqtr3d 2156 . . . . 5 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((((𝐹𝑓 · 𝐺)‘𝑧) − ((𝐹𝑓 · 𝐺)‘𝐶)) / (𝑧𝐶)) = (((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) · (𝐺𝑧)) + ((((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) · (𝐹𝐶))))
156155mpteq2dva 3986 . . . 4 (𝜑 → (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((𝐹𝑓 · 𝐺)‘𝑧) − ((𝐹𝑓 · 𝐺)‘𝐶)) / (𝑧𝐶))) = (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) · (𝐺𝑧)) + ((((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) · (𝐹𝐶)))))
157156oveq1d 5755 . . 3 (𝜑 → ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((𝐹𝑓 · 𝐺)‘𝑧) − ((𝐹𝑓 · 𝐺)‘𝐶)) / (𝑧𝐶))) lim 𝐶) = ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) · (𝐺𝑧)) + ((((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) · (𝐹𝐶)))) lim 𝐶))
158101, 157eleqtrrd 2195 . 2 (𝜑 → ((𝐾 · (𝐺𝐶)) + (𝐿 · (𝐹𝐶))) ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((𝐹𝑓 · 𝐺)‘𝑧) − ((𝐹𝑓 · 𝐺)‘𝐶)) / (𝑧𝐶))) lim 𝐶))
159 eqid 2115 . . 3 (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((𝐹𝑓 · 𝐺)‘𝑧) − ((𝐹𝑓 · 𝐺)‘𝐶)) / (𝑧𝐶))) = (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((𝐹𝑓 · 𝐺)‘𝑧) − ((𝐹𝑓 · 𝐺)‘𝐶)) / (𝑧𝐶)))
160 mulcl 7711 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
161160adantl 273 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ)
162 inidm 3253 . . . 4 (𝑋𝑋) = 𝑋
163161, 6, 25, 135, 135, 162off 5960 . . 3 (𝜑 → (𝐹𝑓 · 𝐺):𝑋⟶ℂ)
1642, 3, 159, 5, 163, 7eldvap 12703 . 2 (𝜑 → (𝐶(𝑆 D (𝐹𝑓 · 𝐺))((𝐾 · (𝐺𝐶)) + (𝐿 · (𝐹𝐶))) ↔ (𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑋) ∧ ((𝐾 · (𝐺𝐶)) + (𝐿 · (𝐹𝐶))) ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((𝐹𝑓 · 𝐺)‘𝑧) − ((𝐹𝑓 · 𝐺)‘𝐶)) / (𝑧𝐶))) lim 𝐶))))
16510, 158, 164mpbir2and 911 1 (𝜑𝐶(𝑆 D (𝐹𝑓 · 𝐺))((𝐾 · (𝐺𝐶)) + (𝐿 · (𝐹𝐶))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1314  wcel 1463  {crab 2395  Vcvv 2658  cin 3038  wss 3039  cop 3498   cuni 3704   class class class wbr 3897  cmpt 3957   × cxp 4505  dom cdm 4507  cres 4509  ccom 4511  Rel wrel 4512   Fn wfn 5086  wf 5087  cfv 5091  (class class class)co 5740  𝑓 cof 5946  pm cpm 6509  cc 7582   + caddc 7587   · cmul 7589  cmin 7897   # cap 8306   / cdiv 8392  abscabs 10709  t crest 12015  MetOpencmopn 12049  Topctop 12059  TopOnctopon 12072  intcnt 12157   Cn ccn 12249   CnP ccnp 12250   ×t ctx 12316  cnccncf 12621   lim climc 12675   D cdv 12676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-iinf 4470  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-mulrcl 7683  ax-addcom 7684  ax-mulcom 7685  ax-addass 7686  ax-mulass 7687  ax-distr 7688  ax-i2m1 7689  ax-0lt1 7690  ax-1rid 7691  ax-0id 7692  ax-rnegex 7693  ax-precex 7694  ax-cnre 7695  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698  ax-pre-apti 7699  ax-pre-ltadd 7700  ax-pre-mulgt0 7701  ax-pre-mulext 7702  ax-arch 7703  ax-caucvg 7704  ax-addf 7706  ax-mulf 7707
This theorem depends on definitions:  df-bi 116  df-stab 799  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rmo 2399  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-if 3443  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-tr 3995  df-id 4183  df-po 4186  df-iso 4187  df-iord 4256  df-on 4258  df-ilim 4259  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-isom 5100  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-of 5948  df-1st 6004  df-2nd 6005  df-recs 6168  df-frec 6254  df-map 6510  df-pm 6511  df-sup 6837  df-inf 6838  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-sub 7899  df-neg 7900  df-reap 8300  df-ap 8307  df-div 8393  df-inn 8678  df-2 8736  df-3 8737  df-4 8738  df-n0 8929  df-z 9006  df-uz 9276  df-q 9361  df-rp 9391  df-xneg 9499  df-xadd 9500  df-seqfrec 10159  df-exp 10233  df-cj 10554  df-re 10555  df-im 10556  df-rsqrt 10710  df-abs 10711  df-rest 12017  df-topgen 12036  df-psmet 12051  df-xmet 12052  df-met 12053  df-bl 12054  df-mopn 12055  df-top 12060  df-topon 12073  df-bases 12105  df-ntr 12160  df-cn 12252  df-cnp 12253  df-tx 12317  df-cncf 12622  df-limced 12677  df-dvap 12678
This theorem is referenced by:  dvmulxx  12720  dvimulf  12722  dvef  12739
  Copyright terms: Public domain W3C validator