ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvmulxxbr GIF version

Theorem dvmulxxbr 12874
Description: The product rule for derivatives at a point. For the (simpler but more limited) function version, see dvmulxx 12876. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 1-Dec-2023.)
Hypotheses
Ref Expression
dvadd.f (𝜑𝐹:𝑋⟶ℂ)
dvadd.x (𝜑𝑋𝑆)
dvaddxx.g (𝜑𝐺:𝑋⟶ℂ)
dvaddbr.s (𝜑𝑆 ⊆ ℂ)
dvadd.bf (𝜑𝐶(𝑆 D 𝐹)𝐾)
dvadd.bg (𝜑𝐶(𝑆 D 𝐺)𝐿)
dvaddcntop.j 𝐽 = (MetOpen‘(abs ∘ − ))
Assertion
Ref Expression
dvmulxxbr (𝜑𝐶(𝑆 D (𝐹𝑓 · 𝐺))((𝐾 · (𝐺𝐶)) + (𝐿 · (𝐹𝐶))))

Proof of Theorem dvmulxxbr
Dummy variables 𝑦 𝑧 𝑥 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvadd.bf . . . 4 (𝜑𝐶(𝑆 D 𝐹)𝐾)
2 eqid 2140 . . . . 5 (𝐽t 𝑆) = (𝐽t 𝑆)
3 dvaddcntop.j . . . . 5 𝐽 = (MetOpen‘(abs ∘ − ))
4 eqid 2140 . . . . 5 (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) = (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)))
5 dvaddbr.s . . . . 5 (𝜑𝑆 ⊆ ℂ)
6 dvadd.f . . . . 5 (𝜑𝐹:𝑋⟶ℂ)
7 dvadd.x . . . . 5 (𝜑𝑋𝑆)
82, 3, 4, 5, 6, 7eldvap 12859 . . . 4 (𝜑 → (𝐶(𝑆 D 𝐹)𝐾 ↔ (𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑋) ∧ 𝐾 ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) lim 𝐶))))
91, 8mpbid 146 . . 3 (𝜑 → (𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑋) ∧ 𝐾 ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) lim 𝐶)))
109simpld 111 . 2 (𝜑𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑋))
117, 5sstrd 3112 . . . . . 6 (𝜑𝑋 ⊆ ℂ)
123cntoptopon 12740 . . . . . . . . . 10 𝐽 ∈ (TopOn‘ℂ)
13 resttopon 12379 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐽t 𝑆) ∈ (TopOn‘𝑆))
1412, 5, 13sylancr 411 . . . . . . . . 9 (𝜑 → (𝐽t 𝑆) ∈ (TopOn‘𝑆))
15 topontop 12220 . . . . . . . . 9 ((𝐽t 𝑆) ∈ (TopOn‘𝑆) → (𝐽t 𝑆) ∈ Top)
1614, 15syl 14 . . . . . . . 8 (𝜑 → (𝐽t 𝑆) ∈ Top)
17 toponuni 12221 . . . . . . . . . 10 ((𝐽t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = (𝐽t 𝑆))
1814, 17syl 14 . . . . . . . . 9 (𝜑𝑆 = (𝐽t 𝑆))
197, 18sseqtrd 3140 . . . . . . . 8 (𝜑𝑋 (𝐽t 𝑆))
20 eqid 2140 . . . . . . . . 9 (𝐽t 𝑆) = (𝐽t 𝑆)
2120ntrss2 12329 . . . . . . . 8 (((𝐽t 𝑆) ∈ Top ∧ 𝑋 (𝐽t 𝑆)) → ((int‘(𝐽t 𝑆))‘𝑋) ⊆ 𝑋)
2216, 19, 21syl2anc 409 . . . . . . 7 (𝜑 → ((int‘(𝐽t 𝑆))‘𝑋) ⊆ 𝑋)
2322, 10sseldd 3103 . . . . . 6 (𝜑𝐶𝑋)
246, 11, 23dvlemap 12857 . . . . 5 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) ∈ ℂ)
25 dvaddxx.g . . . . . . 7 (𝜑𝐺:𝑋⟶ℂ)
2625adantr 274 . . . . . 6 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝐺:𝑋⟶ℂ)
27 elrabi 2841 . . . . . . 7 (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} → 𝑧𝑋)
2827adantl 275 . . . . . 6 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝑧𝑋)
2926, 28ffvelrnd 5564 . . . . 5 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝐺𝑧) ∈ ℂ)
3024, 29mulcld 7810 . . . 4 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) · (𝐺𝑧)) ∈ ℂ)
3125, 11, 23dvlemap 12857 . . . . 5 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) ∈ ℂ)
326, 23ffvelrnd 5564 . . . . . 6 (𝜑 → (𝐹𝐶) ∈ ℂ)
3332adantr 274 . . . . 5 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝐹𝐶) ∈ ℂ)
3431, 33mulcld 7810 . . . 4 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) · (𝐹𝐶)) ∈ ℂ)
35 ssidd 3123 . . . 4 (𝜑 → ℂ ⊆ ℂ)
36 txtopon 12470 . . . . . 6 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝐽 ∈ (TopOn‘ℂ)) → (𝐽 ×t 𝐽) ∈ (TopOn‘(ℂ × ℂ)))
3712, 12, 36mp2an 423 . . . . 5 (𝐽 ×t 𝐽) ∈ (TopOn‘(ℂ × ℂ))
3837toponrestid 12227 . . . 4 (𝐽 ×t 𝐽) = ((𝐽 ×t 𝐽) ↾t (ℂ × ℂ))
399simprd 113 . . . . 5 (𝜑𝐾 ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) lim 𝐶))
40 cnex 7768 . . . . . . . . . . . . 13 ℂ ∈ V
4140a1i 9 . . . . . . . . . . . 12 (𝜑 → ℂ ∈ V)
4241, 5ssexd 4076 . . . . . . . . . . . 12 (𝜑𝑆 ∈ V)
43 elpm2r 6568 . . . . . . . . . . . 12 (((ℂ ∈ V ∧ 𝑆 ∈ V) ∧ (𝐺:𝑋⟶ℂ ∧ 𝑋𝑆)) → 𝐺 ∈ (ℂ ↑pm 𝑆))
4441, 42, 25, 7, 43syl22anc 1218 . . . . . . . . . . 11 (𝜑𝐺 ∈ (ℂ ↑pm 𝑆))
45 reldvg 12856 . . . . . . . . . . 11 ((𝑆 ⊆ ℂ ∧ 𝐺 ∈ (ℂ ↑pm 𝑆)) → Rel (𝑆 D 𝐺))
465, 44, 45syl2anc 409 . . . . . . . . . 10 (𝜑 → Rel (𝑆 D 𝐺))
47 dvadd.bg . . . . . . . . . 10 (𝜑𝐶(𝑆 D 𝐺)𝐿)
48 releldm 4782 . . . . . . . . . 10 ((Rel (𝑆 D 𝐺) ∧ 𝐶(𝑆 D 𝐺)𝐿) → 𝐶 ∈ dom (𝑆 D 𝐺))
4946, 47, 48syl2anc 409 . . . . . . . . 9 (𝜑𝐶 ∈ dom (𝑆 D 𝐺))
50 eqid 2140 . . . . . . . . . 10 (𝐽t 𝑋) = (𝐽t 𝑋)
5150, 3dvcnp2cntop 12871 . . . . . . . . 9 (((𝑆 ⊆ ℂ ∧ 𝐺:𝑋⟶ℂ ∧ 𝑋𝑆) ∧ 𝐶 ∈ dom (𝑆 D 𝐺)) → 𝐺 ∈ (((𝐽t 𝑋) CnP 𝐽)‘𝐶))
525, 25, 7, 49, 51syl31anc 1220 . . . . . . . 8 (𝜑𝐺 ∈ (((𝐽t 𝑋) CnP 𝐽)‘𝐶))
533, 50cnplimccntop 12847 . . . . . . . . 9 ((𝑋 ⊆ ℂ ∧ 𝐶𝑋) → (𝐺 ∈ (((𝐽t 𝑋) CnP 𝐽)‘𝐶) ↔ (𝐺:𝑋⟶ℂ ∧ (𝐺𝐶) ∈ (𝐺 lim 𝐶))))
5411, 23, 53syl2anc 409 . . . . . . . 8 (𝜑 → (𝐺 ∈ (((𝐽t 𝑋) CnP 𝐽)‘𝐶) ↔ (𝐺:𝑋⟶ℂ ∧ (𝐺𝐶) ∈ (𝐺 lim 𝐶))))
5552, 54mpbid 146 . . . . . . 7 (𝜑 → (𝐺:𝑋⟶ℂ ∧ (𝐺𝐶) ∈ (𝐺 lim 𝐶)))
5655simprd 113 . . . . . 6 (𝜑 → (𝐺𝐶) ∈ (𝐺 lim 𝐶))
5725, 11limcdifap 12839 . . . . . . 7 (𝜑 → (𝐺 lim 𝐶) = ((𝐺 ↾ {𝑤𝑋𝑤 # 𝐶}) lim 𝐶))
58 ssrab2 3187 . . . . . . . . . 10 {𝑤𝑋𝑤 # 𝐶} ⊆ 𝑋
5958a1i 9 . . . . . . . . 9 (𝜑 → {𝑤𝑋𝑤 # 𝐶} ⊆ 𝑋)
6025, 59feqresmpt 5483 . . . . . . . 8 (𝜑 → (𝐺 ↾ {𝑤𝑋𝑤 # 𝐶}) = (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (𝐺𝑧)))
6160oveq1d 5797 . . . . . . 7 (𝜑 → ((𝐺 ↾ {𝑤𝑋𝑤 # 𝐶}) lim 𝐶) = ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (𝐺𝑧)) lim 𝐶))
6257, 61eqtrd 2173 . . . . . 6 (𝜑 → (𝐺 lim 𝐶) = ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (𝐺𝑧)) lim 𝐶))
6356, 62eleqtrd 2219 . . . . 5 (𝜑 → (𝐺𝐶) ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (𝐺𝑧)) lim 𝐶))
643mulcncntop 12762 . . . . . 6 · ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
655, 6, 7dvcl 12860 . . . . . . . 8 ((𝜑𝐶(𝑆 D 𝐹)𝐾) → 𝐾 ∈ ℂ)
661, 65mpdan 418 . . . . . . 7 (𝜑𝐾 ∈ ℂ)
6725, 23ffvelrnd 5564 . . . . . . 7 (𝜑 → (𝐺𝐶) ∈ ℂ)
6866, 67opelxpd 4580 . . . . . 6 (𝜑 → ⟨𝐾, (𝐺𝐶)⟩ ∈ (ℂ × ℂ))
6937toponunii 12223 . . . . . . 7 (ℂ × ℂ) = (𝐽 ×t 𝐽)
7069cncnpi 12436 . . . . . 6 (( · ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ∧ ⟨𝐾, (𝐺𝐶)⟩ ∈ (ℂ × ℂ)) → · ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨𝐾, (𝐺𝐶)⟩))
7164, 68, 70sylancr 411 . . . . 5 (𝜑 → · ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨𝐾, (𝐺𝐶)⟩))
7224, 29, 35, 35, 3, 38, 39, 63, 71limccnp2cntop 12854 . . . 4 (𝜑 → (𝐾 · (𝐺𝐶)) ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) · (𝐺𝑧))) lim 𝐶))
73 eqid 2140 . . . . . . . 8 (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))
742, 3, 73, 5, 25, 7eldvap 12859 . . . . . . 7 (𝜑 → (𝐶(𝑆 D 𝐺)𝐿 ↔ (𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑋) ∧ 𝐿 ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))))
7547, 74mpbid 146 . . . . . 6 (𝜑 → (𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑋) ∧ 𝐿 ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶)))
7675simprd 113 . . . . 5 (𝜑𝐿 ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))
77 cncfmptc 12790 . . . . . . . 8 (((𝐹𝐶) ∈ ℂ ∧ 𝑋 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑧𝑋 ↦ (𝐹𝐶)) ∈ (𝑋cn→ℂ))
7832, 11, 35, 77syl3anc 1217 . . . . . . 7 (𝜑 → (𝑧𝑋 ↦ (𝐹𝐶)) ∈ (𝑋cn→ℂ))
79 eqidd 2141 . . . . . . 7 (𝑧 = 𝐶 → (𝐹𝐶) = (𝐹𝐶))
8078, 23, 79cnmptlimc 12851 . . . . . 6 (𝜑 → (𝐹𝐶) ∈ ((𝑧𝑋 ↦ (𝐹𝐶)) lim 𝐶))
8132adantr 274 . . . . . . . . 9 ((𝜑𝑧𝑋) → (𝐹𝐶) ∈ ℂ)
8281fmpttd 5583 . . . . . . . 8 (𝜑 → (𝑧𝑋 ↦ (𝐹𝐶)):𝑋⟶ℂ)
8382, 11limcdifap 12839 . . . . . . 7 (𝜑 → ((𝑧𝑋 ↦ (𝐹𝐶)) lim 𝐶) = (((𝑧𝑋 ↦ (𝐹𝐶)) ↾ {𝑤𝑋𝑤 # 𝐶}) lim 𝐶))
84 resmpt 4875 . . . . . . . . 9 ({𝑤𝑋𝑤 # 𝐶} ⊆ 𝑋 → ((𝑧𝑋 ↦ (𝐹𝐶)) ↾ {𝑤𝑋𝑤 # 𝐶}) = (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (𝐹𝐶)))
8558, 84mp1i 10 . . . . . . . 8 (𝜑 → ((𝑧𝑋 ↦ (𝐹𝐶)) ↾ {𝑤𝑋𝑤 # 𝐶}) = (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (𝐹𝐶)))
8685oveq1d 5797 . . . . . . 7 (𝜑 → (((𝑧𝑋 ↦ (𝐹𝐶)) ↾ {𝑤𝑋𝑤 # 𝐶}) lim 𝐶) = ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (𝐹𝐶)) lim 𝐶))
8783, 86eqtrd 2173 . . . . . 6 (𝜑 → ((𝑧𝑋 ↦ (𝐹𝐶)) lim 𝐶) = ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (𝐹𝐶)) lim 𝐶))
8880, 87eleqtrd 2219 . . . . 5 (𝜑 → (𝐹𝐶) ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (𝐹𝐶)) lim 𝐶))
895, 25, 7dvcl 12860 . . . . . . . 8 ((𝜑𝐶(𝑆 D 𝐺)𝐿) → 𝐿 ∈ ℂ)
9047, 89mpdan 418 . . . . . . 7 (𝜑𝐿 ∈ ℂ)
9190, 32opelxpd 4580 . . . . . 6 (𝜑 → ⟨𝐿, (𝐹𝐶)⟩ ∈ (ℂ × ℂ))
9269cncnpi 12436 . . . . . 6 (( · ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ∧ ⟨𝐿, (𝐹𝐶)⟩ ∈ (ℂ × ℂ)) → · ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨𝐿, (𝐹𝐶)⟩))
9364, 91, 92sylancr 411 . . . . 5 (𝜑 → · ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨𝐿, (𝐹𝐶)⟩))
9431, 33, 35, 35, 3, 38, 76, 88, 93limccnp2cntop 12854 . . . 4 (𝜑 → (𝐿 · (𝐹𝐶)) ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) · (𝐹𝐶))) lim 𝐶))
953addcncntop 12760 . . . . 5 + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
9666, 67mulcld 7810 . . . . . 6 (𝜑 → (𝐾 · (𝐺𝐶)) ∈ ℂ)
9790, 32mulcld 7810 . . . . . 6 (𝜑 → (𝐿 · (𝐹𝐶)) ∈ ℂ)
9896, 97opelxpd 4580 . . . . 5 (𝜑 → ⟨(𝐾 · (𝐺𝐶)), (𝐿 · (𝐹𝐶))⟩ ∈ (ℂ × ℂ))
9969cncnpi 12436 . . . . 5 (( + ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ∧ ⟨(𝐾 · (𝐺𝐶)), (𝐿 · (𝐹𝐶))⟩ ∈ (ℂ × ℂ)) → + ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨(𝐾 · (𝐺𝐶)), (𝐿 · (𝐹𝐶))⟩))
10095, 98, 99sylancr 411 . . . 4 (𝜑 → + ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨(𝐾 · (𝐺𝐶)), (𝐿 · (𝐹𝐶))⟩))
10130, 34, 35, 35, 3, 38, 72, 94, 100limccnp2cntop 12854 . . 3 (𝜑 → ((𝐾 · (𝐺𝐶)) + (𝐿 · (𝐹𝐶))) ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) · (𝐺𝑧)) + ((((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) · (𝐹𝐶)))) lim 𝐶))
1026adantr 274 . . . . . . . . . 10 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝐹:𝑋⟶ℂ)
103102, 28ffvelrnd 5564 . . . . . . . . 9 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝐹𝑧) ∈ ℂ)
104103, 33subcld 8097 . . . . . . . 8 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((𝐹𝑧) − (𝐹𝐶)) ∈ ℂ)
105104, 29mulcld 7810 . . . . . . 7 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (((𝐹𝑧) − (𝐹𝐶)) · (𝐺𝑧)) ∈ ℂ)
10667adantr 274 . . . . . . . . 9 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝐺𝐶) ∈ ℂ)
10729, 106subcld 8097 . . . . . . . 8 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((𝐺𝑧) − (𝐺𝐶)) ∈ ℂ)
108107, 33mulcld 7810 . . . . . . 7 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶)) ∈ ℂ)
10911adantr 274 . . . . . . . . 9 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝑋 ⊆ ℂ)
110109, 28sseldd 3103 . . . . . . . 8 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝑧 ∈ ℂ)
11111, 23sseldd 3103 . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
112111adantr 274 . . . . . . . 8 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝐶 ∈ ℂ)
113110, 112subcld 8097 . . . . . . 7 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝑧𝐶) ∈ ℂ)
114 breq1 3940 . . . . . . . . . . 11 (𝑤 = 𝑧 → (𝑤 # 𝐶𝑧 # 𝐶))
115114elrab 2844 . . . . . . . . . 10 (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↔ (𝑧𝑋𝑧 # 𝐶))
116115simprbi 273 . . . . . . . . 9 (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} → 𝑧 # 𝐶)
117116adantl 275 . . . . . . . 8 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝑧 # 𝐶)
118110, 112, 117subap0d 8430 . . . . . . 7 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝑧𝐶) # 0)
119105, 108, 113, 118divdirapd 8613 . . . . . 6 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (((((𝐹𝑧) − (𝐹𝐶)) · (𝐺𝑧)) + (((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶))) / (𝑧𝐶)) = (((((𝐹𝑧) − (𝐹𝐶)) · (𝐺𝑧)) / (𝑧𝐶)) + ((((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶)) / (𝑧𝐶))))
120103, 29mulcld 7810 . . . . . . . . 9 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((𝐹𝑧) · (𝐺𝑧)) ∈ ℂ)
12133, 29mulcld 7810 . . . . . . . . 9 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((𝐹𝐶) · (𝐺𝑧)) ∈ ℂ)
12233, 106mulcld 7810 . . . . . . . . 9 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((𝐹𝐶) · (𝐺𝐶)) ∈ ℂ)
123120, 121, 122npncand 8121 . . . . . . . 8 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((((𝐹𝑧) · (𝐺𝑧)) − ((𝐹𝐶) · (𝐺𝑧))) + (((𝐹𝐶) · (𝐺𝑧)) − ((𝐹𝐶) · (𝐺𝐶)))) = (((𝐹𝑧) · (𝐺𝑧)) − ((𝐹𝐶) · (𝐺𝐶))))
124103, 33, 29subdird 8201 . . . . . . . . 9 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (((𝐹𝑧) − (𝐹𝐶)) · (𝐺𝑧)) = (((𝐹𝑧) · (𝐺𝑧)) − ((𝐹𝐶) · (𝐺𝑧))))
125107, 33mulcomd 7811 . . . . . . . . . 10 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶)) = ((𝐹𝐶) · ((𝐺𝑧) − (𝐺𝐶))))
12633, 29, 106subdid 8200 . . . . . . . . . 10 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((𝐹𝐶) · ((𝐺𝑧) − (𝐺𝐶))) = (((𝐹𝐶) · (𝐺𝑧)) − ((𝐹𝐶) · (𝐺𝐶))))
127125, 126eqtrd 2173 . . . . . . . . 9 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶)) = (((𝐹𝐶) · (𝐺𝑧)) − ((𝐹𝐶) · (𝐺𝐶))))
128124, 127oveq12d 5800 . . . . . . . 8 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((((𝐹𝑧) − (𝐹𝐶)) · (𝐺𝑧)) + (((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶))) = ((((𝐹𝑧) · (𝐺𝑧)) − ((𝐹𝐶) · (𝐺𝑧))) + (((𝐹𝐶) · (𝐺𝑧)) − ((𝐹𝐶) · (𝐺𝐶)))))
12928, 28elind 3266 . . . . . . . . . 10 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝑧 ∈ (𝑋𝑋))
1306ffnd 5281 . . . . . . . . . . . 12 (𝜑𝐹 Fn 𝑋)
131130adantr 274 . . . . . . . . . . 11 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝐹 Fn 𝑋)
13225ffnd 5281 . . . . . . . . . . . 12 (𝜑𝐺 Fn 𝑋)
133132adantr 274 . . . . . . . . . . 11 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝐺 Fn 𝑋)
134 ssexg 4075 . . . . . . . . . . . . 13 ((𝑋 ⊆ ℂ ∧ ℂ ∈ V) → 𝑋 ∈ V)
13511, 40, 134sylancl 410 . . . . . . . . . . . 12 (𝜑𝑋 ∈ V)
136135adantr 274 . . . . . . . . . . 11 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝑋 ∈ V)
137 eqid 2140 . . . . . . . . . . 11 (𝑋𝑋) = (𝑋𝑋)
138 eqidd 2141 . . . . . . . . . . 11 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝑧𝑋) → (𝐹𝑧) = (𝐹𝑧))
139 eqidd 2141 . . . . . . . . . . 11 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝑧𝑋) → (𝐺𝑧) = (𝐺𝑧))
140120adantr 274 . . . . . . . . . . 11 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝑧 ∈ (𝑋𝑋)) → ((𝐹𝑧) · (𝐺𝑧)) ∈ ℂ)
141131, 133, 136, 136, 137, 138, 139, 140ofvalg 5999 . . . . . . . . . 10 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝑧 ∈ (𝑋𝑋)) → ((𝐹𝑓 · 𝐺)‘𝑧) = ((𝐹𝑧) · (𝐺𝑧)))
142129, 141mpdan 418 . . . . . . . . 9 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((𝐹𝑓 · 𝐺)‘𝑧) = ((𝐹𝑧) · (𝐺𝑧)))
14323, 23elind 3266 . . . . . . . . . 10 (𝜑𝐶 ∈ (𝑋𝑋))
144 eqidd 2141 . . . . . . . . . . 11 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝐶𝑋) → (𝐹𝐶) = (𝐹𝐶))
145 eqidd 2141 . . . . . . . . . . 11 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝐶𝑋) → (𝐺𝐶) = (𝐺𝐶))
146122adantr 274 . . . . . . . . . . 11 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝐶 ∈ (𝑋𝑋)) → ((𝐹𝐶) · (𝐺𝐶)) ∈ ℂ)
147131, 133, 136, 136, 137, 144, 145, 146ofvalg 5999 . . . . . . . . . 10 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝐶 ∈ (𝑋𝑋)) → ((𝐹𝑓 · 𝐺)‘𝐶) = ((𝐹𝐶) · (𝐺𝐶)))
148143, 147mpidan 420 . . . . . . . . 9 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((𝐹𝑓 · 𝐺)‘𝐶) = ((𝐹𝐶) · (𝐺𝐶)))
149142, 148oveq12d 5800 . . . . . . . 8 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (((𝐹𝑓 · 𝐺)‘𝑧) − ((𝐹𝑓 · 𝐺)‘𝐶)) = (((𝐹𝑧) · (𝐺𝑧)) − ((𝐹𝐶) · (𝐺𝐶))))
150123, 128, 1493eqtr4d 2183 . . . . . . 7 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((((𝐹𝑧) − (𝐹𝐶)) · (𝐺𝑧)) + (((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶))) = (((𝐹𝑓 · 𝐺)‘𝑧) − ((𝐹𝑓 · 𝐺)‘𝐶)))
151150oveq1d 5797 . . . . . 6 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (((((𝐹𝑧) − (𝐹𝐶)) · (𝐺𝑧)) + (((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶))) / (𝑧𝐶)) = ((((𝐹𝑓 · 𝐺)‘𝑧) − ((𝐹𝑓 · 𝐺)‘𝐶)) / (𝑧𝐶)))
152104, 29, 113, 118div23apd 8612 . . . . . . 7 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((((𝐹𝑧) − (𝐹𝐶)) · (𝐺𝑧)) / (𝑧𝐶)) = ((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) · (𝐺𝑧)))
153107, 33, 113, 118div23apd 8612 . . . . . . 7 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶)) / (𝑧𝐶)) = ((((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) · (𝐹𝐶)))
154152, 153oveq12d 5800 . . . . . 6 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (((((𝐹𝑧) − (𝐹𝐶)) · (𝐺𝑧)) / (𝑧𝐶)) + ((((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶)) / (𝑧𝐶))) = (((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) · (𝐺𝑧)) + ((((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) · (𝐹𝐶))))
155119, 151, 1543eqtr3d 2181 . . . . 5 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((((𝐹𝑓 · 𝐺)‘𝑧) − ((𝐹𝑓 · 𝐺)‘𝐶)) / (𝑧𝐶)) = (((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) · (𝐺𝑧)) + ((((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) · (𝐹𝐶))))
156155mpteq2dva 4026 . . . 4 (𝜑 → (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((𝐹𝑓 · 𝐺)‘𝑧) − ((𝐹𝑓 · 𝐺)‘𝐶)) / (𝑧𝐶))) = (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) · (𝐺𝑧)) + ((((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) · (𝐹𝐶)))))
157156oveq1d 5797 . . 3 (𝜑 → ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((𝐹𝑓 · 𝐺)‘𝑧) − ((𝐹𝑓 · 𝐺)‘𝐶)) / (𝑧𝐶))) lim 𝐶) = ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) · (𝐺𝑧)) + ((((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) · (𝐹𝐶)))) lim 𝐶))
158101, 157eleqtrrd 2220 . 2 (𝜑 → ((𝐾 · (𝐺𝐶)) + (𝐿 · (𝐹𝐶))) ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((𝐹𝑓 · 𝐺)‘𝑧) − ((𝐹𝑓 · 𝐺)‘𝐶)) / (𝑧𝐶))) lim 𝐶))
159 eqid 2140 . . 3 (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((𝐹𝑓 · 𝐺)‘𝑧) − ((𝐹𝑓 · 𝐺)‘𝐶)) / (𝑧𝐶))) = (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((𝐹𝑓 · 𝐺)‘𝑧) − ((𝐹𝑓 · 𝐺)‘𝐶)) / (𝑧𝐶)))
160 mulcl 7771 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
161160adantl 275 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ)
162 inidm 3290 . . . 4 (𝑋𝑋) = 𝑋
163161, 6, 25, 135, 135, 162off 6002 . . 3 (𝜑 → (𝐹𝑓 · 𝐺):𝑋⟶ℂ)
1642, 3, 159, 5, 163, 7eldvap 12859 . 2 (𝜑 → (𝐶(𝑆 D (𝐹𝑓 · 𝐺))((𝐾 · (𝐺𝐶)) + (𝐿 · (𝐹𝐶))) ↔ (𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑋) ∧ ((𝐾 · (𝐺𝐶)) + (𝐿 · (𝐹𝐶))) ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((𝐹𝑓 · 𝐺)‘𝑧) − ((𝐹𝑓 · 𝐺)‘𝐶)) / (𝑧𝐶))) lim 𝐶))))
16510, 158, 164mpbir2and 929 1 (𝜑𝐶(𝑆 D (𝐹𝑓 · 𝐺))((𝐾 · (𝐺𝐶)) + (𝐿 · (𝐹𝐶))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1332  wcel 1481  {crab 2421  Vcvv 2689  cin 3075  wss 3076  cop 3535   cuni 3744   class class class wbr 3937  cmpt 3997   × cxp 4545  dom cdm 4547  cres 4549  ccom 4551  Rel wrel 4552   Fn wfn 5126  wf 5127  cfv 5131  (class class class)co 5782  𝑓 cof 5988  pm cpm 6551  cc 7642   + caddc 7647   · cmul 7649  cmin 7957   # cap 8367   / cdiv 8456  abscabs 10801  t crest 12159  MetOpencmopn 12193  Topctop 12203  TopOnctopon 12216  intcnt 12301   Cn ccn 12393   CnP ccnp 12394   ×t ctx 12460  cnccncf 12765   lim climc 12831   D cdv 12832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764  ax-addf 7766  ax-mulf 7767
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-of 5990  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-map 6552  df-pm 6553  df-sup 6879  df-inf 6880  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-xneg 9589  df-xadd 9590  df-seqfrec 10250  df-exp 10324  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-rest 12161  df-topgen 12180  df-psmet 12195  df-xmet 12196  df-met 12197  df-bl 12198  df-mopn 12199  df-top 12204  df-topon 12217  df-bases 12249  df-ntr 12304  df-cn 12396  df-cnp 12397  df-tx 12461  df-cncf 12766  df-limced 12833  df-dvap 12834
This theorem is referenced by:  dvmulxx  12876  dvimulf  12878  dvef  12896
  Copyright terms: Public domain W3C validator