Step | Hyp | Ref
| Expression |
1 | | dvadd.bf |
. . . 4
⊢ (𝜑 → 𝐶(𝑆 D 𝐹)𝐾) |
2 | | eqid 2170 |
. . . . 5
⊢ (𝐽 ↾t 𝑆) = (𝐽 ↾t 𝑆) |
3 | | dvaddcntop.j |
. . . . 5
⊢ 𝐽 = (MetOpen‘(abs ∘
− )) |
4 | | eqid 2170 |
. . . . 5
⊢ (𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶))) = (𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶))) |
5 | | dvaddbr.s |
. . . . 5
⊢ (𝜑 → 𝑆 ⊆ ℂ) |
6 | | dvadd.f |
. . . . 5
⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
7 | | dvadd.x |
. . . . 5
⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
8 | 2, 3, 4, 5, 6, 7 | eldvap 13445 |
. . . 4
⊢ (𝜑 → (𝐶(𝑆 D 𝐹)𝐾 ↔ (𝐶 ∈ ((int‘(𝐽 ↾t 𝑆))‘𝑋) ∧ 𝐾 ∈ ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)))) |
9 | 1, 8 | mpbid 146 |
. . 3
⊢ (𝜑 → (𝐶 ∈ ((int‘(𝐽 ↾t 𝑆))‘𝑋) ∧ 𝐾 ∈ ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶))) |
10 | 9 | simpld 111 |
. 2
⊢ (𝜑 → 𝐶 ∈ ((int‘(𝐽 ↾t 𝑆))‘𝑋)) |
11 | 7, 5 | sstrd 3157 |
. . . . . 6
⊢ (𝜑 → 𝑋 ⊆ ℂ) |
12 | 3 | cntoptopon 13326 |
. . . . . . . . . 10
⊢ 𝐽 ∈
(TopOn‘ℂ) |
13 | | resttopon 12965 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ (TopOn‘ℂ)
∧ 𝑆 ⊆ ℂ)
→ (𝐽
↾t 𝑆)
∈ (TopOn‘𝑆)) |
14 | 12, 5, 13 | sylancr 412 |
. . . . . . . . 9
⊢ (𝜑 → (𝐽 ↾t 𝑆) ∈ (TopOn‘𝑆)) |
15 | | topontop 12806 |
. . . . . . . . 9
⊢ ((𝐽 ↾t 𝑆) ∈ (TopOn‘𝑆) → (𝐽 ↾t 𝑆) ∈ Top) |
16 | 14, 15 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → (𝐽 ↾t 𝑆) ∈ Top) |
17 | | toponuni 12807 |
. . . . . . . . . 10
⊢ ((𝐽 ↾t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = ∪ (𝐽 ↾t 𝑆)) |
18 | 14, 17 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → 𝑆 = ∪ (𝐽 ↾t 𝑆)) |
19 | 7, 18 | sseqtrd 3185 |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ⊆ ∪ (𝐽 ↾t 𝑆)) |
20 | | eqid 2170 |
. . . . . . . . 9
⊢ ∪ (𝐽
↾t 𝑆) =
∪ (𝐽 ↾t 𝑆) |
21 | 20 | ntrss2 12915 |
. . . . . . . 8
⊢ (((𝐽 ↾t 𝑆) ∈ Top ∧ 𝑋 ⊆ ∪ (𝐽
↾t 𝑆))
→ ((int‘(𝐽
↾t 𝑆))‘𝑋) ⊆ 𝑋) |
22 | 16, 19, 21 | syl2anc 409 |
. . . . . . 7
⊢ (𝜑 → ((int‘(𝐽 ↾t 𝑆))‘𝑋) ⊆ 𝑋) |
23 | 22, 10 | sseldd 3148 |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ 𝑋) |
24 | 6, 11, 23 | dvlemap 13443 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶)) ∈ ℂ) |
25 | | dvaddxx.g |
. . . . . . 7
⊢ (𝜑 → 𝐺:𝑋⟶ℂ) |
26 | 25 | adantr 274 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → 𝐺:𝑋⟶ℂ) |
27 | | elrabi 2883 |
. . . . . . 7
⊢ (𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} → 𝑧 ∈ 𝑋) |
28 | 27 | adantl 275 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → 𝑧 ∈ 𝑋) |
29 | 26, 28 | ffvelrnd 5632 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (𝐺‘𝑧) ∈ ℂ) |
30 | 24, 29 | mulcld 7940 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → ((((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶)) · (𝐺‘𝑧)) ∈ ℂ) |
31 | 25, 11, 23 | dvlemap 13443 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶)) ∈ ℂ) |
32 | 6, 23 | ffvelrnd 5632 |
. . . . . 6
⊢ (𝜑 → (𝐹‘𝐶) ∈ ℂ) |
33 | 32 | adantr 274 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (𝐹‘𝐶) ∈ ℂ) |
34 | 31, 33 | mulcld 7940 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → ((((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶)) · (𝐹‘𝐶)) ∈ ℂ) |
35 | | ssidd 3168 |
. . . 4
⊢ (𝜑 → ℂ ⊆
ℂ) |
36 | | txtopon 13056 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘ℂ)
∧ 𝐽 ∈
(TopOn‘ℂ)) → (𝐽 ×t 𝐽) ∈ (TopOn‘(ℂ ×
ℂ))) |
37 | 12, 12, 36 | mp2an 424 |
. . . . 5
⊢ (𝐽 ×t 𝐽) ∈ (TopOn‘(ℂ
× ℂ)) |
38 | 37 | toponrestid 12813 |
. . . 4
⊢ (𝐽 ×t 𝐽) = ((𝐽 ×t 𝐽) ↾t (ℂ ×
ℂ)) |
39 | 9 | simprd 113 |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)) |
40 | | cnex 7898 |
. . . . . . . . . . . . 13
⊢ ℂ
∈ V |
41 | 40 | a1i 9 |
. . . . . . . . . . . 12
⊢ (𝜑 → ℂ ∈
V) |
42 | 41, 5 | ssexd 4129 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑆 ∈ V) |
43 | | elpm2r 6644 |
. . . . . . . . . . . 12
⊢
(((ℂ ∈ V ∧ 𝑆 ∈ V) ∧ (𝐺:𝑋⟶ℂ ∧ 𝑋 ⊆ 𝑆)) → 𝐺 ∈ (ℂ ↑pm
𝑆)) |
44 | 41, 42, 25, 7, 43 | syl22anc 1234 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺 ∈ (ℂ ↑pm
𝑆)) |
45 | | reldvg 13442 |
. . . . . . . . . . 11
⊢ ((𝑆 ⊆ ℂ ∧ 𝐺 ∈ (ℂ
↑pm 𝑆)) → Rel (𝑆 D 𝐺)) |
46 | 5, 44, 45 | syl2anc 409 |
. . . . . . . . . 10
⊢ (𝜑 → Rel (𝑆 D 𝐺)) |
47 | | dvadd.bg |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶(𝑆 D 𝐺)𝐿) |
48 | | releldm 4846 |
. . . . . . . . . 10
⊢ ((Rel
(𝑆 D 𝐺) ∧ 𝐶(𝑆 D 𝐺)𝐿) → 𝐶 ∈ dom (𝑆 D 𝐺)) |
49 | 46, 47, 48 | syl2anc 409 |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈ dom (𝑆 D 𝐺)) |
50 | | eqid 2170 |
. . . . . . . . . 10
⊢ (𝐽 ↾t 𝑋) = (𝐽 ↾t 𝑋) |
51 | 50, 3 | dvcnp2cntop 13457 |
. . . . . . . . 9
⊢ (((𝑆 ⊆ ℂ ∧ 𝐺:𝑋⟶ℂ ∧ 𝑋 ⊆ 𝑆) ∧ 𝐶 ∈ dom (𝑆 D 𝐺)) → 𝐺 ∈ (((𝐽 ↾t 𝑋) CnP 𝐽)‘𝐶)) |
52 | 5, 25, 7, 49, 51 | syl31anc 1236 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ (((𝐽 ↾t 𝑋) CnP 𝐽)‘𝐶)) |
53 | 3, 50 | cnplimccntop 13433 |
. . . . . . . . 9
⊢ ((𝑋 ⊆ ℂ ∧ 𝐶 ∈ 𝑋) → (𝐺 ∈ (((𝐽 ↾t 𝑋) CnP 𝐽)‘𝐶) ↔ (𝐺:𝑋⟶ℂ ∧ (𝐺‘𝐶) ∈ (𝐺 limℂ 𝐶)))) |
54 | 11, 23, 53 | syl2anc 409 |
. . . . . . . 8
⊢ (𝜑 → (𝐺 ∈ (((𝐽 ↾t 𝑋) CnP 𝐽)‘𝐶) ↔ (𝐺:𝑋⟶ℂ ∧ (𝐺‘𝐶) ∈ (𝐺 limℂ 𝐶)))) |
55 | 52, 54 | mpbid 146 |
. . . . . . 7
⊢ (𝜑 → (𝐺:𝑋⟶ℂ ∧ (𝐺‘𝐶) ∈ (𝐺 limℂ 𝐶))) |
56 | 55 | simprd 113 |
. . . . . 6
⊢ (𝜑 → (𝐺‘𝐶) ∈ (𝐺 limℂ 𝐶)) |
57 | 25, 11 | limcdifap 13425 |
. . . . . . 7
⊢ (𝜑 → (𝐺 limℂ 𝐶) = ((𝐺 ↾ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) limℂ 𝐶)) |
58 | | ssrab2 3232 |
. . . . . . . . . 10
⊢ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ⊆ 𝑋 |
59 | 58 | a1i 9 |
. . . . . . . . 9
⊢ (𝜑 → {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ⊆ 𝑋) |
60 | 25, 59 | feqresmpt 5550 |
. . . . . . . 8
⊢ (𝜑 → (𝐺 ↾ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) = (𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (𝐺‘𝑧))) |
61 | 60 | oveq1d 5868 |
. . . . . . 7
⊢ (𝜑 → ((𝐺 ↾ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) limℂ 𝐶) = ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (𝐺‘𝑧)) limℂ 𝐶)) |
62 | 57, 61 | eqtrd 2203 |
. . . . . 6
⊢ (𝜑 → (𝐺 limℂ 𝐶) = ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (𝐺‘𝑧)) limℂ 𝐶)) |
63 | 56, 62 | eleqtrd 2249 |
. . . . 5
⊢ (𝜑 → (𝐺‘𝐶) ∈ ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (𝐺‘𝑧)) limℂ 𝐶)) |
64 | 3 | mulcncntop 13348 |
. . . . . 6
⊢ ·
∈ ((𝐽
×t 𝐽) Cn
𝐽) |
65 | 5, 6, 7 | dvcl 13446 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐶(𝑆 D 𝐹)𝐾) → 𝐾 ∈ ℂ) |
66 | 1, 65 | mpdan 419 |
. . . . . . 7
⊢ (𝜑 → 𝐾 ∈ ℂ) |
67 | 25, 23 | ffvelrnd 5632 |
. . . . . . 7
⊢ (𝜑 → (𝐺‘𝐶) ∈ ℂ) |
68 | 66, 67 | opelxpd 4644 |
. . . . . 6
⊢ (𝜑 → 〈𝐾, (𝐺‘𝐶)〉 ∈ (ℂ ×
ℂ)) |
69 | 37 | toponunii 12809 |
. . . . . . 7
⊢ (ℂ
× ℂ) = ∪ (𝐽 ×t 𝐽) |
70 | 69 | cncnpi 13022 |
. . . . . 6
⊢ ((
· ∈ ((𝐽
×t 𝐽) Cn
𝐽) ∧ 〈𝐾, (𝐺‘𝐶)〉 ∈ (ℂ × ℂ))
→ · ∈ (((𝐽
×t 𝐽) CnP
𝐽)‘〈𝐾, (𝐺‘𝐶)〉)) |
71 | 64, 68, 70 | sylancr 412 |
. . . . 5
⊢ (𝜑 → · ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘〈𝐾, (𝐺‘𝐶)〉)) |
72 | 24, 29, 35, 35, 3, 38, 39, 63, 71 | limccnp2cntop 13440 |
. . . 4
⊢ (𝜑 → (𝐾 · (𝐺‘𝐶)) ∈ ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ ((((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶)) · (𝐺‘𝑧))) limℂ 𝐶)) |
73 | | eqid 2170 |
. . . . . . . 8
⊢ (𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) = (𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) |
74 | 2, 3, 73, 5, 25, 7 | eldvap 13445 |
. . . . . . 7
⊢ (𝜑 → (𝐶(𝑆 D 𝐺)𝐿 ↔ (𝐶 ∈ ((int‘(𝐽 ↾t 𝑆))‘𝑋) ∧ 𝐿 ∈ ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)))) |
75 | 47, 74 | mpbid 146 |
. . . . . 6
⊢ (𝜑 → (𝐶 ∈ ((int‘(𝐽 ↾t 𝑆))‘𝑋) ∧ 𝐿 ∈ ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶))) |
76 | 75 | simprd 113 |
. . . . 5
⊢ (𝜑 → 𝐿 ∈ ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)) |
77 | | cncfmptc 13376 |
. . . . . . . 8
⊢ (((𝐹‘𝐶) ∈ ℂ ∧ 𝑋 ⊆ ℂ ∧ ℂ ⊆
ℂ) → (𝑧 ∈
𝑋 ↦ (𝐹‘𝐶)) ∈ (𝑋–cn→ℂ)) |
78 | 32, 11, 35, 77 | syl3anc 1233 |
. . . . . . 7
⊢ (𝜑 → (𝑧 ∈ 𝑋 ↦ (𝐹‘𝐶)) ∈ (𝑋–cn→ℂ)) |
79 | | eqidd 2171 |
. . . . . . 7
⊢ (𝑧 = 𝐶 → (𝐹‘𝐶) = (𝐹‘𝐶)) |
80 | 78, 23, 79 | cnmptlimc 13437 |
. . . . . 6
⊢ (𝜑 → (𝐹‘𝐶) ∈ ((𝑧 ∈ 𝑋 ↦ (𝐹‘𝐶)) limℂ 𝐶)) |
81 | 32 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (𝐹‘𝐶) ∈ ℂ) |
82 | 81 | fmpttd 5651 |
. . . . . . . 8
⊢ (𝜑 → (𝑧 ∈ 𝑋 ↦ (𝐹‘𝐶)):𝑋⟶ℂ) |
83 | 82, 11 | limcdifap 13425 |
. . . . . . 7
⊢ (𝜑 → ((𝑧 ∈ 𝑋 ↦ (𝐹‘𝐶)) limℂ 𝐶) = (((𝑧 ∈ 𝑋 ↦ (𝐹‘𝐶)) ↾ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) limℂ 𝐶)) |
84 | | resmpt 4939 |
. . . . . . . . 9
⊢ ({𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ⊆ 𝑋 → ((𝑧 ∈ 𝑋 ↦ (𝐹‘𝐶)) ↾ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) = (𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (𝐹‘𝐶))) |
85 | 58, 84 | mp1i 10 |
. . . . . . . 8
⊢ (𝜑 → ((𝑧 ∈ 𝑋 ↦ (𝐹‘𝐶)) ↾ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) = (𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (𝐹‘𝐶))) |
86 | 85 | oveq1d 5868 |
. . . . . . 7
⊢ (𝜑 → (((𝑧 ∈ 𝑋 ↦ (𝐹‘𝐶)) ↾ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) limℂ 𝐶) = ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (𝐹‘𝐶)) limℂ 𝐶)) |
87 | 83, 86 | eqtrd 2203 |
. . . . . 6
⊢ (𝜑 → ((𝑧 ∈ 𝑋 ↦ (𝐹‘𝐶)) limℂ 𝐶) = ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (𝐹‘𝐶)) limℂ 𝐶)) |
88 | 80, 87 | eleqtrd 2249 |
. . . . 5
⊢ (𝜑 → (𝐹‘𝐶) ∈ ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (𝐹‘𝐶)) limℂ 𝐶)) |
89 | 5, 25, 7 | dvcl 13446 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐶(𝑆 D 𝐺)𝐿) → 𝐿 ∈ ℂ) |
90 | 47, 89 | mpdan 419 |
. . . . . . 7
⊢ (𝜑 → 𝐿 ∈ ℂ) |
91 | 90, 32 | opelxpd 4644 |
. . . . . 6
⊢ (𝜑 → 〈𝐿, (𝐹‘𝐶)〉 ∈ (ℂ ×
ℂ)) |
92 | 69 | cncnpi 13022 |
. . . . . 6
⊢ ((
· ∈ ((𝐽
×t 𝐽) Cn
𝐽) ∧ 〈𝐿, (𝐹‘𝐶)〉 ∈ (ℂ × ℂ))
→ · ∈ (((𝐽
×t 𝐽) CnP
𝐽)‘〈𝐿, (𝐹‘𝐶)〉)) |
93 | 64, 91, 92 | sylancr 412 |
. . . . 5
⊢ (𝜑 → · ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘〈𝐿, (𝐹‘𝐶)〉)) |
94 | 31, 33, 35, 35, 3, 38, 76, 88, 93 | limccnp2cntop 13440 |
. . . 4
⊢ (𝜑 → (𝐿 · (𝐹‘𝐶)) ∈ ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ ((((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶)) · (𝐹‘𝐶))) limℂ 𝐶)) |
95 | 3 | addcncntop 13346 |
. . . . 5
⊢ + ∈
((𝐽 ×t
𝐽) Cn 𝐽) |
96 | 66, 67 | mulcld 7940 |
. . . . . 6
⊢ (𝜑 → (𝐾 · (𝐺‘𝐶)) ∈ ℂ) |
97 | 90, 32 | mulcld 7940 |
. . . . . 6
⊢ (𝜑 → (𝐿 · (𝐹‘𝐶)) ∈ ℂ) |
98 | 96, 97 | opelxpd 4644 |
. . . . 5
⊢ (𝜑 → 〈(𝐾 · (𝐺‘𝐶)), (𝐿 · (𝐹‘𝐶))〉 ∈ (ℂ ×
ℂ)) |
99 | 69 | cncnpi 13022 |
. . . . 5
⊢ (( +
∈ ((𝐽
×t 𝐽) Cn
𝐽) ∧ 〈(𝐾 · (𝐺‘𝐶)), (𝐿 · (𝐹‘𝐶))〉 ∈ (ℂ × ℂ))
→ + ∈ (((𝐽
×t 𝐽) CnP
𝐽)‘〈(𝐾 · (𝐺‘𝐶)), (𝐿 · (𝐹‘𝐶))〉)) |
100 | 95, 98, 99 | sylancr 412 |
. . . 4
⊢ (𝜑 → + ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘〈(𝐾 · (𝐺‘𝐶)), (𝐿 · (𝐹‘𝐶))〉)) |
101 | 30, 34, 35, 35, 3, 38, 72, 94, 100 | limccnp2cntop 13440 |
. . 3
⊢ (𝜑 → ((𝐾 · (𝐺‘𝐶)) + (𝐿 · (𝐹‘𝐶))) ∈ ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (((((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶)) · (𝐺‘𝑧)) + ((((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶)) · (𝐹‘𝐶)))) limℂ 𝐶)) |
102 | 6 | adantr 274 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → 𝐹:𝑋⟶ℂ) |
103 | 102, 28 | ffvelrnd 5632 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (𝐹‘𝑧) ∈ ℂ) |
104 | 103, 33 | subcld 8230 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → ((𝐹‘𝑧) − (𝐹‘𝐶)) ∈ ℂ) |
105 | 104, 29 | mulcld 7940 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (((𝐹‘𝑧) − (𝐹‘𝐶)) · (𝐺‘𝑧)) ∈ ℂ) |
106 | 67 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (𝐺‘𝐶) ∈ ℂ) |
107 | 29, 106 | subcld 8230 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → ((𝐺‘𝑧) − (𝐺‘𝐶)) ∈ ℂ) |
108 | 107, 33 | mulcld 7940 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (((𝐺‘𝑧) − (𝐺‘𝐶)) · (𝐹‘𝐶)) ∈ ℂ) |
109 | 11 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → 𝑋 ⊆ ℂ) |
110 | 109, 28 | sseldd 3148 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → 𝑧 ∈ ℂ) |
111 | 11, 23 | sseldd 3148 |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈ ℂ) |
112 | 111 | adantr 274 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → 𝐶 ∈ ℂ) |
113 | 110, 112 | subcld 8230 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (𝑧 − 𝐶) ∈ ℂ) |
114 | | breq1 3992 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑧 → (𝑤 # 𝐶 ↔ 𝑧 # 𝐶)) |
115 | 114 | elrab 2886 |
. . . . . . . . . 10
⊢ (𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↔ (𝑧 ∈ 𝑋 ∧ 𝑧 # 𝐶)) |
116 | 115 | simprbi 273 |
. . . . . . . . 9
⊢ (𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} → 𝑧 # 𝐶) |
117 | 116 | adantl 275 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → 𝑧 # 𝐶) |
118 | 110, 112,
117 | subap0d 8563 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (𝑧 − 𝐶) # 0) |
119 | 105, 108,
113, 118 | divdirapd 8746 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (((((𝐹‘𝑧) − (𝐹‘𝐶)) · (𝐺‘𝑧)) + (((𝐺‘𝑧) − (𝐺‘𝐶)) · (𝐹‘𝐶))) / (𝑧 − 𝐶)) = (((((𝐹‘𝑧) − (𝐹‘𝐶)) · (𝐺‘𝑧)) / (𝑧 − 𝐶)) + ((((𝐺‘𝑧) − (𝐺‘𝐶)) · (𝐹‘𝐶)) / (𝑧 − 𝐶)))) |
120 | 103, 29 | mulcld 7940 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → ((𝐹‘𝑧) · (𝐺‘𝑧)) ∈ ℂ) |
121 | 33, 29 | mulcld 7940 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → ((𝐹‘𝐶) · (𝐺‘𝑧)) ∈ ℂ) |
122 | 33, 106 | mulcld 7940 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → ((𝐹‘𝐶) · (𝐺‘𝐶)) ∈ ℂ) |
123 | 120, 121,
122 | npncand 8254 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → ((((𝐹‘𝑧) · (𝐺‘𝑧)) − ((𝐹‘𝐶) · (𝐺‘𝑧))) + (((𝐹‘𝐶) · (𝐺‘𝑧)) − ((𝐹‘𝐶) · (𝐺‘𝐶)))) = (((𝐹‘𝑧) · (𝐺‘𝑧)) − ((𝐹‘𝐶) · (𝐺‘𝐶)))) |
124 | 103, 33, 29 | subdird 8334 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (((𝐹‘𝑧) − (𝐹‘𝐶)) · (𝐺‘𝑧)) = (((𝐹‘𝑧) · (𝐺‘𝑧)) − ((𝐹‘𝐶) · (𝐺‘𝑧)))) |
125 | 107, 33 | mulcomd 7941 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (((𝐺‘𝑧) − (𝐺‘𝐶)) · (𝐹‘𝐶)) = ((𝐹‘𝐶) · ((𝐺‘𝑧) − (𝐺‘𝐶)))) |
126 | 33, 29, 106 | subdid 8333 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → ((𝐹‘𝐶) · ((𝐺‘𝑧) − (𝐺‘𝐶))) = (((𝐹‘𝐶) · (𝐺‘𝑧)) − ((𝐹‘𝐶) · (𝐺‘𝐶)))) |
127 | 125, 126 | eqtrd 2203 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (((𝐺‘𝑧) − (𝐺‘𝐶)) · (𝐹‘𝐶)) = (((𝐹‘𝐶) · (𝐺‘𝑧)) − ((𝐹‘𝐶) · (𝐺‘𝐶)))) |
128 | 124, 127 | oveq12d 5871 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → ((((𝐹‘𝑧) − (𝐹‘𝐶)) · (𝐺‘𝑧)) + (((𝐺‘𝑧) − (𝐺‘𝐶)) · (𝐹‘𝐶))) = ((((𝐹‘𝑧) · (𝐺‘𝑧)) − ((𝐹‘𝐶) · (𝐺‘𝑧))) + (((𝐹‘𝐶) · (𝐺‘𝑧)) − ((𝐹‘𝐶) · (𝐺‘𝐶))))) |
129 | 28, 28 | elind 3312 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → 𝑧 ∈ (𝑋 ∩ 𝑋)) |
130 | 6 | ffnd 5348 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹 Fn 𝑋) |
131 | 130 | adantr 274 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → 𝐹 Fn 𝑋) |
132 | 25 | ffnd 5348 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐺 Fn 𝑋) |
133 | 132 | adantr 274 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → 𝐺 Fn 𝑋) |
134 | | ssexg 4128 |
. . . . . . . . . . . . 13
⊢ ((𝑋 ⊆ ℂ ∧ ℂ
∈ V) → 𝑋 ∈
V) |
135 | 11, 40, 134 | sylancl 411 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑋 ∈ V) |
136 | 135 | adantr 274 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → 𝑋 ∈ V) |
137 | | eqid 2170 |
. . . . . . . . . . 11
⊢ (𝑋 ∩ 𝑋) = (𝑋 ∩ 𝑋) |
138 | | eqidd 2171 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) ∧ 𝑧 ∈ 𝑋) → (𝐹‘𝑧) = (𝐹‘𝑧)) |
139 | | eqidd 2171 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) ∧ 𝑧 ∈ 𝑋) → (𝐺‘𝑧) = (𝐺‘𝑧)) |
140 | 120 | adantr 274 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) ∧ 𝑧 ∈ (𝑋 ∩ 𝑋)) → ((𝐹‘𝑧) · (𝐺‘𝑧)) ∈ ℂ) |
141 | 131, 133,
136, 136, 137, 138, 139, 140 | ofvalg 6070 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) ∧ 𝑧 ∈ (𝑋 ∩ 𝑋)) → ((𝐹 ∘𝑓 · 𝐺)‘𝑧) = ((𝐹‘𝑧) · (𝐺‘𝑧))) |
142 | 129, 141 | mpdan 419 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → ((𝐹 ∘𝑓 · 𝐺)‘𝑧) = ((𝐹‘𝑧) · (𝐺‘𝑧))) |
143 | 23, 23 | elind 3312 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈ (𝑋 ∩ 𝑋)) |
144 | | eqidd 2171 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) ∧ 𝐶 ∈ 𝑋) → (𝐹‘𝐶) = (𝐹‘𝐶)) |
145 | | eqidd 2171 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) ∧ 𝐶 ∈ 𝑋) → (𝐺‘𝐶) = (𝐺‘𝐶)) |
146 | 122 | adantr 274 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) ∧ 𝐶 ∈ (𝑋 ∩ 𝑋)) → ((𝐹‘𝐶) · (𝐺‘𝐶)) ∈ ℂ) |
147 | 131, 133,
136, 136, 137, 144, 145, 146 | ofvalg 6070 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) ∧ 𝐶 ∈ (𝑋 ∩ 𝑋)) → ((𝐹 ∘𝑓 · 𝐺)‘𝐶) = ((𝐹‘𝐶) · (𝐺‘𝐶))) |
148 | 143, 147 | mpidan 421 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → ((𝐹 ∘𝑓 · 𝐺)‘𝐶) = ((𝐹‘𝐶) · (𝐺‘𝐶))) |
149 | 142, 148 | oveq12d 5871 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (((𝐹 ∘𝑓 · 𝐺)‘𝑧) − ((𝐹 ∘𝑓 · 𝐺)‘𝐶)) = (((𝐹‘𝑧) · (𝐺‘𝑧)) − ((𝐹‘𝐶) · (𝐺‘𝐶)))) |
150 | 123, 128,
149 | 3eqtr4d 2213 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → ((((𝐹‘𝑧) − (𝐹‘𝐶)) · (𝐺‘𝑧)) + (((𝐺‘𝑧) − (𝐺‘𝐶)) · (𝐹‘𝐶))) = (((𝐹 ∘𝑓 · 𝐺)‘𝑧) − ((𝐹 ∘𝑓 · 𝐺)‘𝐶))) |
151 | 150 | oveq1d 5868 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (((((𝐹‘𝑧) − (𝐹‘𝐶)) · (𝐺‘𝑧)) + (((𝐺‘𝑧) − (𝐺‘𝐶)) · (𝐹‘𝐶))) / (𝑧 − 𝐶)) = ((((𝐹 ∘𝑓 · 𝐺)‘𝑧) − ((𝐹 ∘𝑓 · 𝐺)‘𝐶)) / (𝑧 − 𝐶))) |
152 | 104, 29, 113, 118 | div23apd 8745 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → ((((𝐹‘𝑧) − (𝐹‘𝐶)) · (𝐺‘𝑧)) / (𝑧 − 𝐶)) = ((((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶)) · (𝐺‘𝑧))) |
153 | 107, 33, 113, 118 | div23apd 8745 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → ((((𝐺‘𝑧) − (𝐺‘𝐶)) · (𝐹‘𝐶)) / (𝑧 − 𝐶)) = ((((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶)) · (𝐹‘𝐶))) |
154 | 152, 153 | oveq12d 5871 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (((((𝐹‘𝑧) − (𝐹‘𝐶)) · (𝐺‘𝑧)) / (𝑧 − 𝐶)) + ((((𝐺‘𝑧) − (𝐺‘𝐶)) · (𝐹‘𝐶)) / (𝑧 − 𝐶))) = (((((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶)) · (𝐺‘𝑧)) + ((((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶)) · (𝐹‘𝐶)))) |
155 | 119, 151,
154 | 3eqtr3d 2211 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → ((((𝐹 ∘𝑓 · 𝐺)‘𝑧) − ((𝐹 ∘𝑓 · 𝐺)‘𝐶)) / (𝑧 − 𝐶)) = (((((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶)) · (𝐺‘𝑧)) + ((((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶)) · (𝐹‘𝐶)))) |
156 | 155 | mpteq2dva 4079 |
. . . 4
⊢ (𝜑 → (𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ ((((𝐹 ∘𝑓 · 𝐺)‘𝑧) − ((𝐹 ∘𝑓 · 𝐺)‘𝐶)) / (𝑧 − 𝐶))) = (𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (((((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶)) · (𝐺‘𝑧)) + ((((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶)) · (𝐹‘𝐶))))) |
157 | 156 | oveq1d 5868 |
. . 3
⊢ (𝜑 → ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ ((((𝐹 ∘𝑓 · 𝐺)‘𝑧) − ((𝐹 ∘𝑓 · 𝐺)‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶) = ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (((((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶)) · (𝐺‘𝑧)) + ((((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶)) · (𝐹‘𝐶)))) limℂ 𝐶)) |
158 | 101, 157 | eleqtrrd 2250 |
. 2
⊢ (𝜑 → ((𝐾 · (𝐺‘𝐶)) + (𝐿 · (𝐹‘𝐶))) ∈ ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ ((((𝐹 ∘𝑓 · 𝐺)‘𝑧) − ((𝐹 ∘𝑓 · 𝐺)‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)) |
159 | | eqid 2170 |
. . 3
⊢ (𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ ((((𝐹 ∘𝑓 · 𝐺)‘𝑧) − ((𝐹 ∘𝑓 · 𝐺)‘𝐶)) / (𝑧 − 𝐶))) = (𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ ((((𝐹 ∘𝑓 · 𝐺)‘𝑧) − ((𝐹 ∘𝑓 · 𝐺)‘𝐶)) / (𝑧 − 𝐶))) |
160 | | mulcl 7901 |
. . . . 5
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) |
161 | 160 | adantl 275 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ) |
162 | | inidm 3336 |
. . . 4
⊢ (𝑋 ∩ 𝑋) = 𝑋 |
163 | 161, 6, 25, 135, 135, 162 | off 6073 |
. . 3
⊢ (𝜑 → (𝐹 ∘𝑓 · 𝐺):𝑋⟶ℂ) |
164 | 2, 3, 159, 5, 163, 7 | eldvap 13445 |
. 2
⊢ (𝜑 → (𝐶(𝑆 D (𝐹 ∘𝑓 · 𝐺))((𝐾 · (𝐺‘𝐶)) + (𝐿 · (𝐹‘𝐶))) ↔ (𝐶 ∈ ((int‘(𝐽 ↾t 𝑆))‘𝑋) ∧ ((𝐾 · (𝐺‘𝐶)) + (𝐿 · (𝐹‘𝐶))) ∈ ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ ((((𝐹 ∘𝑓 · 𝐺)‘𝑧) − ((𝐹 ∘𝑓 · 𝐺)‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)))) |
165 | 10, 158, 164 | mpbir2and 939 |
1
⊢ (𝜑 → 𝐶(𝑆 D (𝐹 ∘𝑓 · 𝐺))((𝐾 · (𝐺‘𝐶)) + (𝐿 · (𝐹‘𝐶)))) |