ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isnsg3 GIF version

Theorem isnsg3 13072
Description: A subgroup is normal iff the conjugation of all the elements of the subgroup is in the subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
isnsg3.1 𝑋 = (Base‘𝐺)
isnsg3.2 + = (+g𝐺)
isnsg3.3 = (-g𝐺)
Assertion
Ref Expression
isnsg3 (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆))
Distinct variable groups:   𝑥,𝑦,   𝑥,𝐺,𝑦   𝑥, + ,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦

Proof of Theorem isnsg3
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nsgsubg 13070 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
2 isnsg3.1 . . . . . 6 𝑋 = (Base‘𝐺)
3 isnsg3.2 . . . . . 6 + = (+g𝐺)
4 isnsg3.3 . . . . . 6 = (-g𝐺)
52, 3, 4nsgconj 13071 . . . . 5 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑥𝑋𝑦𝑆) → ((𝑥 + 𝑦) 𝑥) ∈ 𝑆)
653expb 1204 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑥𝑋𝑦𝑆)) → ((𝑥 + 𝑦) 𝑥) ∈ 𝑆)
76ralrimivva 2559 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆)
81, 7jca 306 . 2 (𝑆 ∈ (NrmSGrp‘𝐺) → (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆))
9 simpl 109 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) → 𝑆 ∈ (SubGrp‘𝐺))
10 subgrcl 13044 . . . . . . . . . . . 12 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
1110ad2antrr 488 . . . . . . . . . . 11 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → 𝐺 ∈ Grp)
12 simprll 537 . . . . . . . . . . 11 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → 𝑧𝑋)
13 eqid 2177 . . . . . . . . . . . 12 (0g𝐺) = (0g𝐺)
14 eqid 2177 . . . . . . . . . . . 12 (invg𝐺) = (invg𝐺)
152, 3, 13, 14grplinv 12927 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → (((invg𝐺)‘𝑧) + 𝑧) = (0g𝐺))
1611, 12, 15syl2anc 411 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → (((invg𝐺)‘𝑧) + 𝑧) = (0g𝐺))
1716oveq1d 5892 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → ((((invg𝐺)‘𝑧) + 𝑧) + 𝑤) = ((0g𝐺) + 𝑤))
182, 14grpinvcl 12926 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → ((invg𝐺)‘𝑧) ∈ 𝑋)
1911, 12, 18syl2anc 411 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → ((invg𝐺)‘𝑧) ∈ 𝑋)
20 simprlr 538 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → 𝑤𝑋)
212, 3grpass 12891 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝑧) ∈ 𝑋𝑧𝑋𝑤𝑋)) → ((((invg𝐺)‘𝑧) + 𝑧) + 𝑤) = (((invg𝐺)‘𝑧) + (𝑧 + 𝑤)))
2211, 19, 12, 20, 21syl13anc 1240 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → ((((invg𝐺)‘𝑧) + 𝑧) + 𝑤) = (((invg𝐺)‘𝑧) + (𝑧 + 𝑤)))
232, 3, 13grplid 12911 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑤𝑋) → ((0g𝐺) + 𝑤) = 𝑤)
2411, 20, 23syl2anc 411 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → ((0g𝐺) + 𝑤) = 𝑤)
2517, 22, 243eqtr3d 2218 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → (((invg𝐺)‘𝑧) + (𝑧 + 𝑤)) = 𝑤)
2625oveq1d 5892 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → ((((invg𝐺)‘𝑧) + (𝑧 + 𝑤)) ((invg𝐺)‘𝑧)) = (𝑤 ((invg𝐺)‘𝑧)))
272, 3, 4, 14, 11, 20, 12grpsubinv 12948 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → (𝑤 ((invg𝐺)‘𝑧)) = (𝑤 + 𝑧))
2826, 27eqtrd 2210 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → ((((invg𝐺)‘𝑧) + (𝑧 + 𝑤)) ((invg𝐺)‘𝑧)) = (𝑤 + 𝑧))
29 simprr 531 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → (𝑧 + 𝑤) ∈ 𝑆)
30 simplr 528 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆)
31 oveq1 5884 . . . . . . . . . 10 (𝑥 = ((invg𝐺)‘𝑧) → (𝑥 + 𝑦) = (((invg𝐺)‘𝑧) + 𝑦))
32 id 19 . . . . . . . . . 10 (𝑥 = ((invg𝐺)‘𝑧) → 𝑥 = ((invg𝐺)‘𝑧))
3331, 32oveq12d 5895 . . . . . . . . 9 (𝑥 = ((invg𝐺)‘𝑧) → ((𝑥 + 𝑦) 𝑥) = ((((invg𝐺)‘𝑧) + 𝑦) ((invg𝐺)‘𝑧)))
3433eleq1d 2246 . . . . . . . 8 (𝑥 = ((invg𝐺)‘𝑧) → (((𝑥 + 𝑦) 𝑥) ∈ 𝑆 ↔ ((((invg𝐺)‘𝑧) + 𝑦) ((invg𝐺)‘𝑧)) ∈ 𝑆))
35 oveq2 5885 . . . . . . . . . 10 (𝑦 = (𝑧 + 𝑤) → (((invg𝐺)‘𝑧) + 𝑦) = (((invg𝐺)‘𝑧) + (𝑧 + 𝑤)))
3635oveq1d 5892 . . . . . . . . 9 (𝑦 = (𝑧 + 𝑤) → ((((invg𝐺)‘𝑧) + 𝑦) ((invg𝐺)‘𝑧)) = ((((invg𝐺)‘𝑧) + (𝑧 + 𝑤)) ((invg𝐺)‘𝑧)))
3736eleq1d 2246 . . . . . . . 8 (𝑦 = (𝑧 + 𝑤) → (((((invg𝐺)‘𝑧) + 𝑦) ((invg𝐺)‘𝑧)) ∈ 𝑆 ↔ ((((invg𝐺)‘𝑧) + (𝑧 + 𝑤)) ((invg𝐺)‘𝑧)) ∈ 𝑆))
3834, 37rspc2va 2857 . . . . . . 7 (((((invg𝐺)‘𝑧) ∈ 𝑋 ∧ (𝑧 + 𝑤) ∈ 𝑆) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) → ((((invg𝐺)‘𝑧) + (𝑧 + 𝑤)) ((invg𝐺)‘𝑧)) ∈ 𝑆)
3919, 29, 30, 38syl21anc 1237 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → ((((invg𝐺)‘𝑧) + (𝑧 + 𝑤)) ((invg𝐺)‘𝑧)) ∈ 𝑆)
4028, 39eqeltrrd 2255 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → (𝑤 + 𝑧) ∈ 𝑆)
4140expr 375 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ (𝑧𝑋𝑤𝑋)) → ((𝑧 + 𝑤) ∈ 𝑆 → (𝑤 + 𝑧) ∈ 𝑆))
4241ralrimivva 2559 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) → ∀𝑧𝑋𝑤𝑋 ((𝑧 + 𝑤) ∈ 𝑆 → (𝑤 + 𝑧) ∈ 𝑆))
432, 3isnsg2 13068 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑧𝑋𝑤𝑋 ((𝑧 + 𝑤) ∈ 𝑆 → (𝑤 + 𝑧) ∈ 𝑆)))
449, 42, 43sylanbrc 417 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) → 𝑆 ∈ (NrmSGrp‘𝐺))
458, 44impbii 126 1 (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  wral 2455  cfv 5218  (class class class)co 5877  Basecbs 12464  +gcplusg 12538  0gc0g 12710  Grpcgrp 12882  invgcminusg 12883  -gcsg 12884  SubGrpcsubg 13032  NrmSGrpcnsg 13033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-inn 8922  df-2 8980  df-ndx 12467  df-slot 12468  df-base 12470  df-plusg 12551  df-0g 12712  df-mgm 12780  df-sgrp 12813  df-mnd 12823  df-grp 12885  df-minusg 12886  df-sbg 12887  df-subg 13035  df-nsg 13036
This theorem is referenced by:  0nsg  13079  nsgid  13080
  Copyright terms: Public domain W3C validator