ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssnmz GIF version

Theorem ssnmz 13489
Description: A subgroup is a subset of its normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
elnmz.1 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)}
nmzsubg.2 𝑋 = (Base‘𝐺)
nmzsubg.3 + = (+g𝐺)
Assertion
Ref Expression
ssnmz (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝑁)
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑆,𝑦   𝑥, + ,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑁(𝑥,𝑦)

Proof of Theorem ssnmz
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmzsubg.2 . . . . . 6 𝑋 = (Base‘𝐺)
21subgss 13452 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝑋)
32sselda 3192 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑧𝑆) → 𝑧𝑋)
4 simpll 527 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → 𝑆 ∈ (SubGrp‘𝐺))
5 subgrcl 13457 . . . . . . . . . . . . 13 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
64, 5syl 14 . . . . . . . . . . . 12 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → 𝐺 ∈ Grp)
74, 2syl 14 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → 𝑆𝑋)
8 simplrl 535 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → 𝑧𝑆)
97, 8sseldd 3193 . . . . . . . . . . . 12 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → 𝑧𝑋)
10 nmzsubg.3 . . . . . . . . . . . . 13 + = (+g𝐺)
11 eqid 2204 . . . . . . . . . . . . 13 (0g𝐺) = (0g𝐺)
12 eqid 2204 . . . . . . . . . . . . 13 (invg𝐺) = (invg𝐺)
131, 10, 11, 12grplinv 13324 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → (((invg𝐺)‘𝑧) + 𝑧) = (0g𝐺))
146, 9, 13syl2anc 411 . . . . . . . . . . 11 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → (((invg𝐺)‘𝑧) + 𝑧) = (0g𝐺))
1514oveq1d 5958 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → ((((invg𝐺)‘𝑧) + 𝑧) + 𝑤) = ((0g𝐺) + 𝑤))
1612subginvcl 13461 . . . . . . . . . . . . 13 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑧𝑆) → ((invg𝐺)‘𝑧) ∈ 𝑆)
174, 8, 16syl2anc 411 . . . . . . . . . . . 12 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → ((invg𝐺)‘𝑧) ∈ 𝑆)
187, 17sseldd 3193 . . . . . . . . . . 11 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → ((invg𝐺)‘𝑧) ∈ 𝑋)
19 simplrr 536 . . . . . . . . . . 11 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → 𝑤𝑋)
201, 10grpass 13283 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝑧) ∈ 𝑋𝑧𝑋𝑤𝑋)) → ((((invg𝐺)‘𝑧) + 𝑧) + 𝑤) = (((invg𝐺)‘𝑧) + (𝑧 + 𝑤)))
216, 18, 9, 19, 20syl13anc 1251 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → ((((invg𝐺)‘𝑧) + 𝑧) + 𝑤) = (((invg𝐺)‘𝑧) + (𝑧 + 𝑤)))
221, 10, 11grplid 13305 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑤𝑋) → ((0g𝐺) + 𝑤) = 𝑤)
236, 19, 22syl2anc 411 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → ((0g𝐺) + 𝑤) = 𝑤)
2415, 21, 233eqtr3d 2245 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → (((invg𝐺)‘𝑧) + (𝑧 + 𝑤)) = 𝑤)
25 simpr 110 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → (𝑧 + 𝑤) ∈ 𝑆)
2610subgcl 13462 . . . . . . . . . 10 ((𝑆 ∈ (SubGrp‘𝐺) ∧ ((invg𝐺)‘𝑧) ∈ 𝑆 ∧ (𝑧 + 𝑤) ∈ 𝑆) → (((invg𝐺)‘𝑧) + (𝑧 + 𝑤)) ∈ 𝑆)
274, 17, 25, 26syl3anc 1249 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → (((invg𝐺)‘𝑧) + (𝑧 + 𝑤)) ∈ 𝑆)
2824, 27eqeltrrd 2282 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → 𝑤𝑆)
2910subgcl 13462 . . . . . . . 8 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑤𝑆𝑧𝑆) → (𝑤 + 𝑧) ∈ 𝑆)
304, 28, 8, 29syl3anc 1249 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → (𝑤 + 𝑧) ∈ 𝑆)
31 simpll 527 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → 𝑆 ∈ (SubGrp‘𝐺))
32 simplrl 535 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → 𝑧𝑆)
3331, 5syl 14 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → 𝐺 ∈ Grp)
34 simplrr 536 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → 𝑤𝑋)
3531, 32, 3syl2anc 411 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → 𝑧𝑋)
36 eqid 2204 . . . . . . . . . . 11 (-g𝐺) = (-g𝐺)
371, 10, 36grppncan 13365 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑤𝑋𝑧𝑋) → ((𝑤 + 𝑧)(-g𝐺)𝑧) = 𝑤)
3833, 34, 35, 37syl3anc 1249 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → ((𝑤 + 𝑧)(-g𝐺)𝑧) = 𝑤)
39 simpr 110 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → (𝑤 + 𝑧) ∈ 𝑆)
4036subgsubcl 13463 . . . . . . . . . 10 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑤 + 𝑧) ∈ 𝑆𝑧𝑆) → ((𝑤 + 𝑧)(-g𝐺)𝑧) ∈ 𝑆)
4131, 39, 32, 40syl3anc 1249 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → ((𝑤 + 𝑧)(-g𝐺)𝑧) ∈ 𝑆)
4238, 41eqeltrrd 2282 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → 𝑤𝑆)
4310subgcl 13462 . . . . . . . 8 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑧𝑆𝑤𝑆) → (𝑧 + 𝑤) ∈ 𝑆)
4431, 32, 42, 43syl3anc 1249 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → (𝑧 + 𝑤) ∈ 𝑆)
4530, 44impbida 596 . . . . . 6 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) → ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆))
4645anassrs 400 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑧𝑆) ∧ 𝑤𝑋) → ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆))
4746ralrimiva 2578 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑧𝑆) → ∀𝑤𝑋 ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆))
48 elnmz.1 . . . . 5 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)}
4948elnmz 13486 . . . 4 (𝑧𝑁 ↔ (𝑧𝑋 ∧ ∀𝑤𝑋 ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆)))
503, 47, 49sylanbrc 417 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑧𝑆) → 𝑧𝑁)
5150ex 115 . 2 (𝑆 ∈ (SubGrp‘𝐺) → (𝑧𝑆𝑧𝑁))
5251ssrdv 3198 1 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝑁)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1372  wcel 2175  wral 2483  {crab 2487  wss 3165  cfv 5270  (class class class)co 5943  Basecbs 12774  +gcplusg 12851  0gc0g 13030  Grpcgrp 13274  invgcminusg 13275  -gcsg 13276  SubGrpcsubg 13445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-pre-ltirr 8036  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-pnf 8108  df-mnf 8109  df-ltxr 8111  df-inn 9036  df-2 9094  df-ndx 12777  df-slot 12778  df-base 12780  df-sets 12781  df-iress 12782  df-plusg 12864  df-0g 13032  df-mgm 13130  df-sgrp 13176  df-mnd 13191  df-grp 13277  df-minusg 13278  df-sbg 13279  df-subg 13448
This theorem is referenced by:  nmznsg  13491
  Copyright terms: Public domain W3C validator