ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssnmz GIF version

Theorem ssnmz 13743
Description: A subgroup is a subset of its normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
elnmz.1 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)}
nmzsubg.2 𝑋 = (Base‘𝐺)
nmzsubg.3 + = (+g𝐺)
Assertion
Ref Expression
ssnmz (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝑁)
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑆,𝑦   𝑥, + ,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑁(𝑥,𝑦)

Proof of Theorem ssnmz
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmzsubg.2 . . . . . 6 𝑋 = (Base‘𝐺)
21subgss 13706 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝑋)
32sselda 3224 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑧𝑆) → 𝑧𝑋)
4 simpll 527 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → 𝑆 ∈ (SubGrp‘𝐺))
5 subgrcl 13711 . . . . . . . . . . . . 13 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
64, 5syl 14 . . . . . . . . . . . 12 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → 𝐺 ∈ Grp)
74, 2syl 14 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → 𝑆𝑋)
8 simplrl 535 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → 𝑧𝑆)
97, 8sseldd 3225 . . . . . . . . . . . 12 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → 𝑧𝑋)
10 nmzsubg.3 . . . . . . . . . . . . 13 + = (+g𝐺)
11 eqid 2229 . . . . . . . . . . . . 13 (0g𝐺) = (0g𝐺)
12 eqid 2229 . . . . . . . . . . . . 13 (invg𝐺) = (invg𝐺)
131, 10, 11, 12grplinv 13578 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → (((invg𝐺)‘𝑧) + 𝑧) = (0g𝐺))
146, 9, 13syl2anc 411 . . . . . . . . . . 11 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → (((invg𝐺)‘𝑧) + 𝑧) = (0g𝐺))
1514oveq1d 6015 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → ((((invg𝐺)‘𝑧) + 𝑧) + 𝑤) = ((0g𝐺) + 𝑤))
1612subginvcl 13715 . . . . . . . . . . . . 13 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑧𝑆) → ((invg𝐺)‘𝑧) ∈ 𝑆)
174, 8, 16syl2anc 411 . . . . . . . . . . . 12 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → ((invg𝐺)‘𝑧) ∈ 𝑆)
187, 17sseldd 3225 . . . . . . . . . . 11 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → ((invg𝐺)‘𝑧) ∈ 𝑋)
19 simplrr 536 . . . . . . . . . . 11 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → 𝑤𝑋)
201, 10grpass 13537 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝑧) ∈ 𝑋𝑧𝑋𝑤𝑋)) → ((((invg𝐺)‘𝑧) + 𝑧) + 𝑤) = (((invg𝐺)‘𝑧) + (𝑧 + 𝑤)))
216, 18, 9, 19, 20syl13anc 1273 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → ((((invg𝐺)‘𝑧) + 𝑧) + 𝑤) = (((invg𝐺)‘𝑧) + (𝑧 + 𝑤)))
221, 10, 11grplid 13559 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑤𝑋) → ((0g𝐺) + 𝑤) = 𝑤)
236, 19, 22syl2anc 411 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → ((0g𝐺) + 𝑤) = 𝑤)
2415, 21, 233eqtr3d 2270 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → (((invg𝐺)‘𝑧) + (𝑧 + 𝑤)) = 𝑤)
25 simpr 110 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → (𝑧 + 𝑤) ∈ 𝑆)
2610subgcl 13716 . . . . . . . . . 10 ((𝑆 ∈ (SubGrp‘𝐺) ∧ ((invg𝐺)‘𝑧) ∈ 𝑆 ∧ (𝑧 + 𝑤) ∈ 𝑆) → (((invg𝐺)‘𝑧) + (𝑧 + 𝑤)) ∈ 𝑆)
274, 17, 25, 26syl3anc 1271 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → (((invg𝐺)‘𝑧) + (𝑧 + 𝑤)) ∈ 𝑆)
2824, 27eqeltrrd 2307 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → 𝑤𝑆)
2910subgcl 13716 . . . . . . . 8 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑤𝑆𝑧𝑆) → (𝑤 + 𝑧) ∈ 𝑆)
304, 28, 8, 29syl3anc 1271 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → (𝑤 + 𝑧) ∈ 𝑆)
31 simpll 527 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → 𝑆 ∈ (SubGrp‘𝐺))
32 simplrl 535 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → 𝑧𝑆)
3331, 5syl 14 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → 𝐺 ∈ Grp)
34 simplrr 536 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → 𝑤𝑋)
3531, 32, 3syl2anc 411 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → 𝑧𝑋)
36 eqid 2229 . . . . . . . . . . 11 (-g𝐺) = (-g𝐺)
371, 10, 36grppncan 13619 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑤𝑋𝑧𝑋) → ((𝑤 + 𝑧)(-g𝐺)𝑧) = 𝑤)
3833, 34, 35, 37syl3anc 1271 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → ((𝑤 + 𝑧)(-g𝐺)𝑧) = 𝑤)
39 simpr 110 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → (𝑤 + 𝑧) ∈ 𝑆)
4036subgsubcl 13717 . . . . . . . . . 10 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑤 + 𝑧) ∈ 𝑆𝑧𝑆) → ((𝑤 + 𝑧)(-g𝐺)𝑧) ∈ 𝑆)
4131, 39, 32, 40syl3anc 1271 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → ((𝑤 + 𝑧)(-g𝐺)𝑧) ∈ 𝑆)
4238, 41eqeltrrd 2307 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → 𝑤𝑆)
4310subgcl 13716 . . . . . . . 8 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑧𝑆𝑤𝑆) → (𝑧 + 𝑤) ∈ 𝑆)
4431, 32, 42, 43syl3anc 1271 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → (𝑧 + 𝑤) ∈ 𝑆)
4530, 44impbida 598 . . . . . 6 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) → ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆))
4645anassrs 400 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑧𝑆) ∧ 𝑤𝑋) → ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆))
4746ralrimiva 2603 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑧𝑆) → ∀𝑤𝑋 ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆))
48 elnmz.1 . . . . 5 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)}
4948elnmz 13740 . . . 4 (𝑧𝑁 ↔ (𝑧𝑋 ∧ ∀𝑤𝑋 ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆)))
503, 47, 49sylanbrc 417 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑧𝑆) → 𝑧𝑁)
5150ex 115 . 2 (𝑆 ∈ (SubGrp‘𝐺) → (𝑧𝑆𝑧𝑁))
5251ssrdv 3230 1 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝑁)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wral 2508  {crab 2512  wss 3197  cfv 5317  (class class class)co 6000  Basecbs 13027  +gcplusg 13105  0gc0g 13284  Grpcgrp 13528  invgcminusg 13529  -gcsg 13530  SubGrpcsubg 13699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-iress 13035  df-plusg 13118  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-grp 13531  df-minusg 13532  df-sbg 13533  df-subg 13702
This theorem is referenced by:  nmznsg  13745
  Copyright terms: Public domain W3C validator