ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssnmz GIF version

Theorem ssnmz 13417
Description: A subgroup is a subset of its normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
elnmz.1 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)}
nmzsubg.2 𝑋 = (Base‘𝐺)
nmzsubg.3 + = (+g𝐺)
Assertion
Ref Expression
ssnmz (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝑁)
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑆,𝑦   𝑥, + ,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑁(𝑥,𝑦)

Proof of Theorem ssnmz
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmzsubg.2 . . . . . 6 𝑋 = (Base‘𝐺)
21subgss 13380 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝑋)
32sselda 3184 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑧𝑆) → 𝑧𝑋)
4 simpll 527 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → 𝑆 ∈ (SubGrp‘𝐺))
5 subgrcl 13385 . . . . . . . . . . . . 13 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
64, 5syl 14 . . . . . . . . . . . 12 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → 𝐺 ∈ Grp)
74, 2syl 14 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → 𝑆𝑋)
8 simplrl 535 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → 𝑧𝑆)
97, 8sseldd 3185 . . . . . . . . . . . 12 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → 𝑧𝑋)
10 nmzsubg.3 . . . . . . . . . . . . 13 + = (+g𝐺)
11 eqid 2196 . . . . . . . . . . . . 13 (0g𝐺) = (0g𝐺)
12 eqid 2196 . . . . . . . . . . . . 13 (invg𝐺) = (invg𝐺)
131, 10, 11, 12grplinv 13252 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → (((invg𝐺)‘𝑧) + 𝑧) = (0g𝐺))
146, 9, 13syl2anc 411 . . . . . . . . . . 11 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → (((invg𝐺)‘𝑧) + 𝑧) = (0g𝐺))
1514oveq1d 5940 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → ((((invg𝐺)‘𝑧) + 𝑧) + 𝑤) = ((0g𝐺) + 𝑤))
1612subginvcl 13389 . . . . . . . . . . . . 13 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑧𝑆) → ((invg𝐺)‘𝑧) ∈ 𝑆)
174, 8, 16syl2anc 411 . . . . . . . . . . . 12 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → ((invg𝐺)‘𝑧) ∈ 𝑆)
187, 17sseldd 3185 . . . . . . . . . . 11 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → ((invg𝐺)‘𝑧) ∈ 𝑋)
19 simplrr 536 . . . . . . . . . . 11 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → 𝑤𝑋)
201, 10grpass 13211 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝑧) ∈ 𝑋𝑧𝑋𝑤𝑋)) → ((((invg𝐺)‘𝑧) + 𝑧) + 𝑤) = (((invg𝐺)‘𝑧) + (𝑧 + 𝑤)))
216, 18, 9, 19, 20syl13anc 1251 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → ((((invg𝐺)‘𝑧) + 𝑧) + 𝑤) = (((invg𝐺)‘𝑧) + (𝑧 + 𝑤)))
221, 10, 11grplid 13233 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑤𝑋) → ((0g𝐺) + 𝑤) = 𝑤)
236, 19, 22syl2anc 411 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → ((0g𝐺) + 𝑤) = 𝑤)
2415, 21, 233eqtr3d 2237 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → (((invg𝐺)‘𝑧) + (𝑧 + 𝑤)) = 𝑤)
25 simpr 110 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → (𝑧 + 𝑤) ∈ 𝑆)
2610subgcl 13390 . . . . . . . . . 10 ((𝑆 ∈ (SubGrp‘𝐺) ∧ ((invg𝐺)‘𝑧) ∈ 𝑆 ∧ (𝑧 + 𝑤) ∈ 𝑆) → (((invg𝐺)‘𝑧) + (𝑧 + 𝑤)) ∈ 𝑆)
274, 17, 25, 26syl3anc 1249 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → (((invg𝐺)‘𝑧) + (𝑧 + 𝑤)) ∈ 𝑆)
2824, 27eqeltrrd 2274 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → 𝑤𝑆)
2910subgcl 13390 . . . . . . . 8 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑤𝑆𝑧𝑆) → (𝑤 + 𝑧) ∈ 𝑆)
304, 28, 8, 29syl3anc 1249 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑧 + 𝑤) ∈ 𝑆) → (𝑤 + 𝑧) ∈ 𝑆)
31 simpll 527 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → 𝑆 ∈ (SubGrp‘𝐺))
32 simplrl 535 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → 𝑧𝑆)
3331, 5syl 14 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → 𝐺 ∈ Grp)
34 simplrr 536 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → 𝑤𝑋)
3531, 32, 3syl2anc 411 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → 𝑧𝑋)
36 eqid 2196 . . . . . . . . . . 11 (-g𝐺) = (-g𝐺)
371, 10, 36grppncan 13293 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑤𝑋𝑧𝑋) → ((𝑤 + 𝑧)(-g𝐺)𝑧) = 𝑤)
3833, 34, 35, 37syl3anc 1249 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → ((𝑤 + 𝑧)(-g𝐺)𝑧) = 𝑤)
39 simpr 110 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → (𝑤 + 𝑧) ∈ 𝑆)
4036subgsubcl 13391 . . . . . . . . . 10 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑤 + 𝑧) ∈ 𝑆𝑧𝑆) → ((𝑤 + 𝑧)(-g𝐺)𝑧) ∈ 𝑆)
4131, 39, 32, 40syl3anc 1249 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → ((𝑤 + 𝑧)(-g𝐺)𝑧) ∈ 𝑆)
4238, 41eqeltrrd 2274 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → 𝑤𝑆)
4310subgcl 13390 . . . . . . . 8 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑧𝑆𝑤𝑆) → (𝑧 + 𝑤) ∈ 𝑆)
4431, 32, 42, 43syl3anc 1249 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) ∧ (𝑤 + 𝑧) ∈ 𝑆) → (𝑧 + 𝑤) ∈ 𝑆)
4530, 44impbida 596 . . . . . 6 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑧𝑆𝑤𝑋)) → ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆))
4645anassrs 400 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑧𝑆) ∧ 𝑤𝑋) → ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆))
4746ralrimiva 2570 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑧𝑆) → ∀𝑤𝑋 ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆))
48 elnmz.1 . . . . 5 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)}
4948elnmz 13414 . . . 4 (𝑧𝑁 ↔ (𝑧𝑋 ∧ ∀𝑤𝑋 ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆)))
503, 47, 49sylanbrc 417 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑧𝑆) → 𝑧𝑁)
5150ex 115 . 2 (𝑆 ∈ (SubGrp‘𝐺) → (𝑧𝑆𝑧𝑁))
5251ssrdv 3190 1 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝑁)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wral 2475  {crab 2479  wss 3157  cfv 5259  (class class class)co 5925  Basecbs 12703  +gcplusg 12780  0gc0g 12958  Grpcgrp 13202  invgcminusg 13203  -gcsg 13204  SubGrpcsubg 13373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-iress 12711  df-plusg 12793  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-minusg 13206  df-sbg 13207  df-subg 13376
This theorem is referenced by:  nmznsg  13419
  Copyright terms: Public domain W3C validator