ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  conjnmzb GIF version

Theorem conjnmzb 13817
Description: Alternative condition for elementhood in the normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
conjghm.x 𝑋 = (Base‘𝐺)
conjghm.p + = (+g𝐺)
conjghm.m = (-g𝐺)
conjsubg.f 𝐹 = (𝑥𝑆 ↦ ((𝐴 + 𝑥) 𝐴))
conjnmz.1 𝑁 = {𝑦𝑋 ∣ ∀𝑧𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)}
Assertion
Ref Expression
conjnmzb (𝑆 ∈ (SubGrp‘𝐺) → (𝐴𝑁 ↔ (𝐴𝑋𝑆 = ran 𝐹)))
Distinct variable groups:   𝑥,𝑦,   𝑥,𝑧, + ,𝑦   𝑥,𝐴,𝑦,𝑧   𝑦,𝐹,𝑧   𝑥,𝑁   𝑥,𝐺,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑥)   (𝑧)   𝑁(𝑦,𝑧)

Proof of Theorem conjnmzb
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 conjnmz.1 . . . . 5 𝑁 = {𝑦𝑋 ∣ ∀𝑧𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)}
21ssrab3 3310 . . . 4 𝑁𝑋
3 simpr 110 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) → 𝐴𝑁)
42, 3sselid 3222 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) → 𝐴𝑋)
5 conjghm.x . . . 4 𝑋 = (Base‘𝐺)
6 conjghm.p . . . 4 + = (+g𝐺)
7 conjghm.m . . . 4 = (-g𝐺)
8 conjsubg.f . . . 4 𝐹 = (𝑥𝑆 ↦ ((𝐴 + 𝑥) 𝐴))
95, 6, 7, 8, 1conjnmz 13816 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) → 𝑆 = ran 𝐹)
104, 9jca 306 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) → (𝐴𝑋𝑆 = ran 𝐹))
11 simprl 529 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴𝑋𝑆 = ran 𝐹)) → 𝐴𝑋)
12 simplrr 536 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴𝑋𝑆 = ran 𝐹)) ∧ 𝑤𝑋) → 𝑆 = ran 𝐹)
1312eleq2d 2299 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴𝑋𝑆 = ran 𝐹)) ∧ 𝑤𝑋) → ((𝐴 + 𝑤) ∈ 𝑆 ↔ (𝐴 + 𝑤) ∈ ran 𝐹))
14 subgrcl 13716 . . . . . . . . . . . . 13 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
1514ad3antrrr 492 . . . . . . . . . . . 12 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) ∧ 𝑤𝑋) ∧ 𝑥𝑆) → 𝐺 ∈ Grp)
16 simpllr 534 . . . . . . . . . . . 12 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) ∧ 𝑤𝑋) ∧ 𝑥𝑆) → 𝐴𝑋)
175subgss 13711 . . . . . . . . . . . . . 14 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝑋)
1817ad2antrr 488 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) ∧ 𝑤𝑋) → 𝑆𝑋)
1918sselda 3224 . . . . . . . . . . . 12 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) ∧ 𝑤𝑋) ∧ 𝑥𝑆) → 𝑥𝑋)
205, 6, 7grpaddsubass 13623 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (𝐴𝑋𝑥𝑋𝐴𝑋)) → ((𝐴 + 𝑥) 𝐴) = (𝐴 + (𝑥 𝐴)))
2115, 16, 19, 16, 20syl13anc 1273 . . . . . . . . . . 11 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) ∧ 𝑤𝑋) ∧ 𝑥𝑆) → ((𝐴 + 𝑥) 𝐴) = (𝐴 + (𝑥 𝐴)))
2221eqeq1d 2238 . . . . . . . . . 10 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) ∧ 𝑤𝑋) ∧ 𝑥𝑆) → (((𝐴 + 𝑥) 𝐴) = (𝐴 + 𝑤) ↔ (𝐴 + (𝑥 𝐴)) = (𝐴 + 𝑤)))
235, 7grpsubcl 13613 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑥𝑋𝐴𝑋) → (𝑥 𝐴) ∈ 𝑋)
2415, 19, 16, 23syl3anc 1271 . . . . . . . . . . 11 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) ∧ 𝑤𝑋) ∧ 𝑥𝑆) → (𝑥 𝐴) ∈ 𝑋)
25 simplr 528 . . . . . . . . . . 11 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) ∧ 𝑤𝑋) ∧ 𝑥𝑆) → 𝑤𝑋)
265, 6grplcan 13595 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ ((𝑥 𝐴) ∈ 𝑋𝑤𝑋𝐴𝑋)) → ((𝐴 + (𝑥 𝐴)) = (𝐴 + 𝑤) ↔ (𝑥 𝐴) = 𝑤))
2715, 24, 25, 16, 26syl13anc 1273 . . . . . . . . . 10 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) ∧ 𝑤𝑋) ∧ 𝑥𝑆) → ((𝐴 + (𝑥 𝐴)) = (𝐴 + 𝑤) ↔ (𝑥 𝐴) = 𝑤))
285, 6, 7grpsubadd 13621 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑥𝑋𝐴𝑋𝑤𝑋)) → ((𝑥 𝐴) = 𝑤 ↔ (𝑤 + 𝐴) = 𝑥))
2915, 19, 16, 25, 28syl13anc 1273 . . . . . . . . . 10 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) ∧ 𝑤𝑋) ∧ 𝑥𝑆) → ((𝑥 𝐴) = 𝑤 ↔ (𝑤 + 𝐴) = 𝑥))
3022, 27, 293bitrd 214 . . . . . . . . 9 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) ∧ 𝑤𝑋) ∧ 𝑥𝑆) → (((𝐴 + 𝑥) 𝐴) = (𝐴 + 𝑤) ↔ (𝑤 + 𝐴) = 𝑥))
31 eqcom 2231 . . . . . . . . 9 ((𝐴 + 𝑤) = ((𝐴 + 𝑥) 𝐴) ↔ ((𝐴 + 𝑥) 𝐴) = (𝐴 + 𝑤))
32 eqcom 2231 . . . . . . . . 9 (𝑥 = (𝑤 + 𝐴) ↔ (𝑤 + 𝐴) = 𝑥)
3330, 31, 323bitr4g 223 . . . . . . . 8 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) ∧ 𝑤𝑋) ∧ 𝑥𝑆) → ((𝐴 + 𝑤) = ((𝐴 + 𝑥) 𝐴) ↔ 𝑥 = (𝑤 + 𝐴)))
3433rexbidva 2527 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) ∧ 𝑤𝑋) → (∃𝑥𝑆 (𝐴 + 𝑤) = ((𝐴 + 𝑥) 𝐴) ↔ ∃𝑥𝑆 𝑥 = (𝑤 + 𝐴)))
3534adantlrr 483 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴𝑋𝑆 = ran 𝐹)) ∧ 𝑤𝑋) → (∃𝑥𝑆 (𝐴 + 𝑤) = ((𝐴 + 𝑥) 𝐴) ↔ ∃𝑥𝑆 𝑥 = (𝑤 + 𝐴)))
3614ad2antrr 488 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴𝑋𝑆 = ran 𝐹)) ∧ 𝑤𝑋) → 𝐺 ∈ Grp)
37 simplrl 535 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴𝑋𝑆 = ran 𝐹)) ∧ 𝑤𝑋) → 𝐴𝑋)
38 simpr 110 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴𝑋𝑆 = ran 𝐹)) ∧ 𝑤𝑋) → 𝑤𝑋)
395, 6, 36, 37, 38grpcld 13547 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴𝑋𝑆 = ran 𝐹)) ∧ 𝑤𝑋) → (𝐴 + 𝑤) ∈ 𝑋)
408elrnmpt 4973 . . . . . . 7 ((𝐴 + 𝑤) ∈ 𝑋 → ((𝐴 + 𝑤) ∈ ran 𝐹 ↔ ∃𝑥𝑆 (𝐴 + 𝑤) = ((𝐴 + 𝑥) 𝐴)))
4139, 40syl 14 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴𝑋𝑆 = ran 𝐹)) ∧ 𝑤𝑋) → ((𝐴 + 𝑤) ∈ ran 𝐹 ↔ ∃𝑥𝑆 (𝐴 + 𝑤) = ((𝐴 + 𝑥) 𝐴)))
42 risset 2558 . . . . . . 7 ((𝑤 + 𝐴) ∈ 𝑆 ↔ ∃𝑥𝑆 𝑥 = (𝑤 + 𝐴))
4342a1i 9 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴𝑋𝑆 = ran 𝐹)) ∧ 𝑤𝑋) → ((𝑤 + 𝐴) ∈ 𝑆 ↔ ∃𝑥𝑆 𝑥 = (𝑤 + 𝐴)))
4435, 41, 433bitr4d 220 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴𝑋𝑆 = ran 𝐹)) ∧ 𝑤𝑋) → ((𝐴 + 𝑤) ∈ ran 𝐹 ↔ (𝑤 + 𝐴) ∈ 𝑆))
4513, 44bitrd 188 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴𝑋𝑆 = ran 𝐹)) ∧ 𝑤𝑋) → ((𝐴 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝐴) ∈ 𝑆))
4645ralrimiva 2603 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴𝑋𝑆 = ran 𝐹)) → ∀𝑤𝑋 ((𝐴 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝐴) ∈ 𝑆))
471elnmz 13745 . . 3 (𝐴𝑁 ↔ (𝐴𝑋 ∧ ∀𝑤𝑋 ((𝐴 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝐴) ∈ 𝑆)))
4811, 46, 47sylanbrc 417 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴𝑋𝑆 = ran 𝐹)) → 𝐴𝑁)
4910, 48impbida 598 1 (𝑆 ∈ (SubGrp‘𝐺) → (𝐴𝑁 ↔ (𝐴𝑋𝑆 = ran 𝐹)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wral 2508  wrex 2509  {crab 2512  wss 3197  cmpt 4145  ran crn 4720  cfv 5318  (class class class)co 6001  Basecbs 13032  +gcplusg 13110  Grpcgrp 13533  -gcsg 13535  SubGrpcsubg 13704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-inn 9111  df-2 9169  df-ndx 13035  df-slot 13036  df-base 13038  df-plusg 13123  df-0g 13291  df-mgm 13389  df-sgrp 13435  df-mnd 13450  df-grp 13536  df-minusg 13537  df-sbg 13538  df-subg 13707
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator