| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltexprlempr | GIF version | ||
| Description: Our constructed difference is a positive real. Lemma for ltexpri 7725. (Contributed by Jim Kingdon, 17-Dec-2019.) |
| Ref | Expression |
|---|---|
| ltexprlem.1 | ⊢ 𝐶 = 〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))}, {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))}〉 |
| Ref | Expression |
|---|---|
| ltexprlempr | ⊢ (𝐴<P 𝐵 → 𝐶 ∈ P) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltexprlem.1 | . . . 4 ⊢ 𝐶 = 〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))}, {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))}〉 | |
| 2 | 1 | ltexprlemm 7712 | . . 3 ⊢ (𝐴<P 𝐵 → (∃𝑞 ∈ Q 𝑞 ∈ (1st ‘𝐶) ∧ ∃𝑟 ∈ Q 𝑟 ∈ (2nd ‘𝐶))) |
| 3 | ssrab2 3277 | . . . . . 6 ⊢ {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))} ⊆ Q | |
| 4 | nqex 7475 | . . . . . . 7 ⊢ Q ∈ V | |
| 5 | 4 | elpw2 4200 | . . . . . 6 ⊢ ({𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))} ∈ 𝒫 Q ↔ {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))} ⊆ Q) |
| 6 | 3, 5 | mpbir 146 | . . . . 5 ⊢ {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))} ∈ 𝒫 Q |
| 7 | ssrab2 3277 | . . . . . 6 ⊢ {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))} ⊆ Q | |
| 8 | 4 | elpw2 4200 | . . . . . 6 ⊢ ({𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))} ∈ 𝒫 Q ↔ {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))} ⊆ Q) |
| 9 | 7, 8 | mpbir 146 | . . . . 5 ⊢ {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))} ∈ 𝒫 Q |
| 10 | opelxpi 4706 | . . . . 5 ⊢ (({𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))} ∈ 𝒫 Q ∧ {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))} ∈ 𝒫 Q) → 〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))}, {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))}〉 ∈ (𝒫 Q × 𝒫 Q)) | |
| 11 | 6, 9, 10 | mp2an 426 | . . . 4 ⊢ 〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))}, {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))}〉 ∈ (𝒫 Q × 𝒫 Q) |
| 12 | 1, 11 | eqeltri 2277 | . . 3 ⊢ 𝐶 ∈ (𝒫 Q × 𝒫 Q) |
| 13 | 2, 12 | jctil 312 | . 2 ⊢ (𝐴<P 𝐵 → (𝐶 ∈ (𝒫 Q × 𝒫 Q) ∧ (∃𝑞 ∈ Q 𝑞 ∈ (1st ‘𝐶) ∧ ∃𝑟 ∈ Q 𝑟 ∈ (2nd ‘𝐶)))) |
| 14 | 1 | ltexprlemrnd 7717 | . . 3 ⊢ (𝐴<P 𝐵 → (∀𝑞 ∈ Q (𝑞 ∈ (1st ‘𝐶) ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐶))) ∧ ∀𝑟 ∈ Q (𝑟 ∈ (2nd ‘𝐶) ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐶))))) |
| 15 | 1 | ltexprlemdisj 7718 | . . 3 ⊢ (𝐴<P 𝐵 → ∀𝑞 ∈ Q ¬ (𝑞 ∈ (1st ‘𝐶) ∧ 𝑞 ∈ (2nd ‘𝐶))) |
| 16 | 1 | ltexprlemloc 7719 | . . 3 ⊢ (𝐴<P 𝐵 → ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st ‘𝐶) ∨ 𝑟 ∈ (2nd ‘𝐶)))) |
| 17 | 14, 15, 16 | 3jca 1179 | . 2 ⊢ (𝐴<P 𝐵 → ((∀𝑞 ∈ Q (𝑞 ∈ (1st ‘𝐶) ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐶))) ∧ ∀𝑟 ∈ Q (𝑟 ∈ (2nd ‘𝐶) ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐶)))) ∧ ∀𝑞 ∈ Q ¬ (𝑞 ∈ (1st ‘𝐶) ∧ 𝑞 ∈ (2nd ‘𝐶)) ∧ ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st ‘𝐶) ∨ 𝑟 ∈ (2nd ‘𝐶))))) |
| 18 | elnp1st2nd 7588 | . 2 ⊢ (𝐶 ∈ P ↔ ((𝐶 ∈ (𝒫 Q × 𝒫 Q) ∧ (∃𝑞 ∈ Q 𝑞 ∈ (1st ‘𝐶) ∧ ∃𝑟 ∈ Q 𝑟 ∈ (2nd ‘𝐶))) ∧ ((∀𝑞 ∈ Q (𝑞 ∈ (1st ‘𝐶) ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐶))) ∧ ∀𝑟 ∈ Q (𝑟 ∈ (2nd ‘𝐶) ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐶)))) ∧ ∀𝑞 ∈ Q ¬ (𝑞 ∈ (1st ‘𝐶) ∧ 𝑞 ∈ (2nd ‘𝐶)) ∧ ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st ‘𝐶) ∨ 𝑟 ∈ (2nd ‘𝐶)))))) | |
| 19 | 13, 17, 18 | sylanbrc 417 | 1 ⊢ (𝐴<P 𝐵 → 𝐶 ∈ P) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 ∧ w3a 980 = wceq 1372 ∃wex 1514 ∈ wcel 2175 ∀wral 2483 ∃wrex 2484 {crab 2487 ⊆ wss 3165 𝒫 cpw 3615 〈cop 3635 class class class wbr 4043 × cxp 4672 ‘cfv 5270 (class class class)co 5943 1st c1st 6223 2nd c2nd 6224 Qcnq 7392 +Q cplq 7394 <Q cltq 7397 Pcnp 7403 <P cltp 7407 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-eprel 4335 df-id 4339 df-po 4342 df-iso 4343 df-iord 4412 df-on 4414 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-irdg 6455 df-1o 6501 df-2o 6502 df-oadd 6505 df-omul 6506 df-er 6619 df-ec 6621 df-qs 6625 df-ni 7416 df-pli 7417 df-mi 7418 df-lti 7419 df-plpq 7456 df-mpq 7457 df-enq 7459 df-nqqs 7460 df-plqqs 7461 df-mqqs 7462 df-1nqqs 7463 df-rq 7464 df-ltnqqs 7465 df-enq0 7536 df-nq0 7537 df-0nq0 7538 df-plq0 7539 df-mq0 7540 df-inp 7578 df-iltp 7582 |
| This theorem is referenced by: ltexprlemfl 7721 ltexprlemrl 7722 ltexprlemfu 7723 ltexprlemru 7724 ltexpri 7725 |
| Copyright terms: Public domain | W3C validator |