ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cauappcvgprlemcl GIF version

Theorem cauappcvgprlemcl 7682
Description: Lemma for cauappcvgpr 7691. The putative limit is a positive real. (Contributed by Jim Kingdon, 20-Jun-2020.)
Hypotheses
Ref Expression
cauappcvgpr.f (𝜑𝐹:QQ)
cauappcvgpr.app (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))
cauappcvgpr.bnd (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))
cauappcvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩
Assertion
Ref Expression
cauappcvgprlemcl (𝜑𝐿P)
Distinct variable groups:   𝐴,𝑝   𝐿,𝑝,𝑞   𝜑,𝑝,𝑞   𝐹,𝑙,𝑢,𝑝,𝑞
Allowed substitution hints:   𝜑(𝑢,𝑙)   𝐴(𝑢,𝑞,𝑙)   𝐿(𝑢,𝑙)

Proof of Theorem cauappcvgprlemcl
Dummy variables 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cauappcvgpr.f . . . 4 (𝜑𝐹:QQ)
2 cauappcvgpr.app . . . 4 (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))
3 cauappcvgpr.bnd . . . 4 (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))
4 cauappcvgpr.lim . . . 4 𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩
51, 2, 3, 4cauappcvgprlemm 7674 . . 3 (𝜑 → (∃𝑠Q 𝑠 ∈ (1st𝐿) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐿)))
6 ssrab2 3255 . . . . . 6 {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)} ⊆ Q
7 nqex 7392 . . . . . . 7 Q ∈ V
87elpw2 4175 . . . . . 6 ({𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)} ∈ 𝒫 Q ↔ {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)} ⊆ Q)
96, 8mpbir 146 . . . . 5 {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)} ∈ 𝒫 Q
10 ssrab2 3255 . . . . . 6 {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢} ⊆ Q
117elpw2 4175 . . . . . 6 ({𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢} ∈ 𝒫 Q ↔ {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢} ⊆ Q)
1210, 11mpbir 146 . . . . 5 {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢} ∈ 𝒫 Q
13 opelxpi 4676 . . . . 5 (({𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)} ∈ 𝒫 Q ∧ {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢} ∈ 𝒫 Q) → ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩ ∈ (𝒫 Q × 𝒫 Q))
149, 12, 13mp2an 426 . . . 4 ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩ ∈ (𝒫 Q × 𝒫 Q)
154, 14eqeltri 2262 . . 3 𝐿 ∈ (𝒫 Q × 𝒫 Q)
165, 15jctil 312 . 2 (𝜑 → (𝐿 ∈ (𝒫 Q × 𝒫 Q) ∧ (∃𝑠Q 𝑠 ∈ (1st𝐿) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐿))))
171, 2, 3, 4cauappcvgprlemrnd 7679 . . 3 (𝜑 → (∀𝑠Q (𝑠 ∈ (1st𝐿) ↔ ∃𝑟Q (𝑠 <Q 𝑟𝑟 ∈ (1st𝐿))) ∧ ∀𝑟Q (𝑟 ∈ (2nd𝐿) ↔ ∃𝑠Q (𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿)))))
181, 2, 3, 4cauappcvgprlemdisj 7680 . . 3 (𝜑 → ∀𝑠Q ¬ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)))
191, 2, 3, 4cauappcvgprlemloc 7681 . . 3 (𝜑 → ∀𝑠Q𝑟Q (𝑠 <Q 𝑟 → (𝑠 ∈ (1st𝐿) ∨ 𝑟 ∈ (2nd𝐿))))
2017, 18, 193jca 1179 . 2 (𝜑 → ((∀𝑠Q (𝑠 ∈ (1st𝐿) ↔ ∃𝑟Q (𝑠 <Q 𝑟𝑟 ∈ (1st𝐿))) ∧ ∀𝑟Q (𝑟 ∈ (2nd𝐿) ↔ ∃𝑠Q (𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿)))) ∧ ∀𝑠Q ¬ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)) ∧ ∀𝑠Q𝑟Q (𝑠 <Q 𝑟 → (𝑠 ∈ (1st𝐿) ∨ 𝑟 ∈ (2nd𝐿)))))
21 elnp1st2nd 7505 . 2 (𝐿P ↔ ((𝐿 ∈ (𝒫 Q × 𝒫 Q) ∧ (∃𝑠Q 𝑠 ∈ (1st𝐿) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐿))) ∧ ((∀𝑠Q (𝑠 ∈ (1st𝐿) ↔ ∃𝑟Q (𝑠 <Q 𝑟𝑟 ∈ (1st𝐿))) ∧ ∀𝑟Q (𝑟 ∈ (2nd𝐿) ↔ ∃𝑠Q (𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿)))) ∧ ∀𝑠Q ¬ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)) ∧ ∀𝑠Q𝑟Q (𝑠 <Q 𝑟 → (𝑠 ∈ (1st𝐿) ∨ 𝑟 ∈ (2nd𝐿))))))
2216, 20, 21sylanbrc 417 1 (𝜑𝐿P)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  w3a 980   = wceq 1364  wcel 2160  wral 2468  wrex 2469  {crab 2472  wss 3144  𝒫 cpw 3590  cop 3610   class class class wbr 4018   × cxp 4642  wf 5231  cfv 5235  (class class class)co 5896  1st c1st 6163  2nd c2nd 6164  Qcnq 7309   +Q cplq 7311   <Q cltq 7314  Pcnp 7320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-eprel 4307  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-ov 5899  df-oprab 5900  df-mpo 5901  df-1st 6165  df-2nd 6166  df-recs 6330  df-irdg 6395  df-1o 6441  df-oadd 6445  df-omul 6446  df-er 6559  df-ec 6561  df-qs 6565  df-ni 7333  df-pli 7334  df-mi 7335  df-lti 7336  df-plpq 7373  df-mpq 7374  df-enq 7376  df-nqqs 7377  df-plqqs 7378  df-mqqs 7379  df-1nqqs 7380  df-rq 7381  df-ltnqqs 7382  df-inp 7495
This theorem is referenced by:  cauappcvgprlemladdfu  7683  cauappcvgprlemladdfl  7684  cauappcvgprlemladdru  7685  cauappcvgprlemladdrl  7686  cauappcvgprlemladd  7687  cauappcvgprlem1  7688  cauappcvgprlem2  7689  cauappcvgpr  7691
  Copyright terms: Public domain W3C validator