Step | Hyp | Ref
| Expression |
1 | | recexpr.1 |
. . . 4
⊢ 𝐵 = 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴))}〉 |
2 | 1 | recexprlemm 7565 |
. . 3
⊢ (𝐴 ∈ P →
(∃𝑞 ∈
Q 𝑞 ∈
(1st ‘𝐵)
∧ ∃𝑟 ∈
Q 𝑟 ∈
(2nd ‘𝐵))) |
3 | | ltrelnq 7306 |
. . . . . . . . . . 11
⊢
<Q ⊆ (Q ×
Q) |
4 | 3 | brel 4656 |
. . . . . . . . . 10
⊢ (𝑥 <Q
𝑦 → (𝑥 ∈ Q ∧
𝑦 ∈
Q)) |
5 | 4 | simpld 111 |
. . . . . . . . 9
⊢ (𝑥 <Q
𝑦 → 𝑥 ∈ Q) |
6 | 5 | adantr 274 |
. . . . . . . 8
⊢ ((𝑥 <Q
𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) → 𝑥 ∈ Q) |
7 | 6 | exlimiv 1586 |
. . . . . . 7
⊢
(∃𝑦(𝑥 <Q
𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) → 𝑥 ∈ Q) |
8 | 7 | abssi 3217 |
. . . . . 6
⊢ {𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))} ⊆
Q |
9 | | nqex 7304 |
. . . . . . 7
⊢
Q ∈ V |
10 | 9 | elpw2 4136 |
. . . . . 6
⊢ ({𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))} ∈ 𝒫
Q ↔ {𝑥
∣ ∃𝑦(𝑥 <Q
𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))} ⊆
Q) |
11 | 8, 10 | mpbir 145 |
. . . . 5
⊢ {𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))} ∈ 𝒫
Q |
12 | 3 | brel 4656 |
. . . . . . . . . 10
⊢ (𝑦 <Q
𝑥 → (𝑦 ∈ Q ∧
𝑥 ∈
Q)) |
13 | 12 | simprd 113 |
. . . . . . . . 9
⊢ (𝑦 <Q
𝑥 → 𝑥 ∈ Q) |
14 | 13 | adantr 274 |
. . . . . . . 8
⊢ ((𝑦 <Q
𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴)) → 𝑥 ∈ Q) |
15 | 14 | exlimiv 1586 |
. . . . . . 7
⊢
(∃𝑦(𝑦 <Q
𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴)) → 𝑥 ∈ Q) |
16 | 15 | abssi 3217 |
. . . . . 6
⊢ {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴))} ⊆
Q |
17 | 9 | elpw2 4136 |
. . . . . 6
⊢ ({𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴))} ∈ 𝒫
Q ↔ {𝑥
∣ ∃𝑦(𝑦 <Q
𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴))} ⊆
Q) |
18 | 16, 17 | mpbir 145 |
. . . . 5
⊢ {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴))} ∈ 𝒫
Q |
19 | | opelxpi 4636 |
. . . . 5
⊢ (({𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))} ∈ 𝒫
Q ∧ {𝑥
∣ ∃𝑦(𝑦 <Q
𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴))} ∈ 𝒫
Q) → 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴))}〉 ∈ (𝒫
Q × 𝒫 Q)) |
20 | 11, 18, 19 | mp2an 423 |
. . . 4
⊢
〈{𝑥 ∣
∃𝑦(𝑥 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴))}〉 ∈ (𝒫
Q × 𝒫 Q) |
21 | 1, 20 | eqeltri 2239 |
. . 3
⊢ 𝐵 ∈ (𝒫
Q × 𝒫 Q) |
22 | 2, 21 | jctil 310 |
. 2
⊢ (𝐴 ∈ P →
(𝐵 ∈ (𝒫
Q × 𝒫 Q) ∧ (∃𝑞 ∈ Q 𝑞 ∈ (1st
‘𝐵) ∧
∃𝑟 ∈
Q 𝑟 ∈
(2nd ‘𝐵)))) |
23 | 1 | recexprlemrnd 7570 |
. . 3
⊢ (𝐴 ∈ P →
(∀𝑞 ∈
Q (𝑞 ∈
(1st ‘𝐵)
↔ ∃𝑟 ∈
Q (𝑞
<Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐵))) ∧ ∀𝑟 ∈ Q (𝑟 ∈ (2nd
‘𝐵) ↔
∃𝑞 ∈
Q (𝑞
<Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐵))))) |
24 | 1 | recexprlemdisj 7571 |
. . 3
⊢ (𝐴 ∈ P →
∀𝑞 ∈
Q ¬ (𝑞
∈ (1st ‘𝐵) ∧ 𝑞 ∈ (2nd ‘𝐵))) |
25 | 1 | recexprlemloc 7572 |
. . 3
⊢ (𝐴 ∈ P →
∀𝑞 ∈
Q ∀𝑟
∈ Q (𝑞
<Q 𝑟 → (𝑞 ∈ (1st ‘𝐵) ∨ 𝑟 ∈ (2nd ‘𝐵)))) |
26 | 23, 24, 25 | 3jca 1167 |
. 2
⊢ (𝐴 ∈ P →
((∀𝑞 ∈
Q (𝑞 ∈
(1st ‘𝐵)
↔ ∃𝑟 ∈
Q (𝑞
<Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐵))) ∧ ∀𝑟 ∈ Q (𝑟 ∈ (2nd
‘𝐵) ↔
∃𝑞 ∈
Q (𝑞
<Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐵)))) ∧ ∀𝑞 ∈ Q ¬
(𝑞 ∈ (1st
‘𝐵) ∧ 𝑞 ∈ (2nd
‘𝐵)) ∧
∀𝑞 ∈
Q ∀𝑟
∈ Q (𝑞
<Q 𝑟 → (𝑞 ∈ (1st ‘𝐵) ∨ 𝑟 ∈ (2nd ‘𝐵))))) |
27 | | elnp1st2nd 7417 |
. 2
⊢ (𝐵 ∈ P ↔
((𝐵 ∈ (𝒫
Q × 𝒫 Q) ∧ (∃𝑞 ∈ Q 𝑞 ∈ (1st
‘𝐵) ∧
∃𝑟 ∈
Q 𝑟 ∈
(2nd ‘𝐵)))
∧ ((∀𝑞 ∈
Q (𝑞 ∈
(1st ‘𝐵)
↔ ∃𝑟 ∈
Q (𝑞
<Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐵))) ∧ ∀𝑟 ∈ Q (𝑟 ∈ (2nd
‘𝐵) ↔
∃𝑞 ∈
Q (𝑞
<Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐵)))) ∧ ∀𝑞 ∈ Q ¬
(𝑞 ∈ (1st
‘𝐵) ∧ 𝑞 ∈ (2nd
‘𝐵)) ∧
∀𝑞 ∈
Q ∀𝑟
∈ Q (𝑞
<Q 𝑟 → (𝑞 ∈ (1st ‘𝐵) ∨ 𝑟 ∈ (2nd ‘𝐵)))))) |
28 | 22, 26, 27 | sylanbrc 414 |
1
⊢ (𝐴 ∈ P →
𝐵 ∈
P) |