ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlempr GIF version

Theorem recexprlempr 7699
Description: 𝐵 is a positive real. Lemma for recexpr 7705. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
Assertion
Ref Expression
recexprlempr (𝐴P𝐵P)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem recexprlempr
Dummy variables 𝑟 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 recexpr.1 . . . 4 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
21recexprlemm 7691 . . 3 (𝐴P → (∃𝑞Q 𝑞 ∈ (1st𝐵) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐵)))
3 ltrelnq 7432 . . . . . . . . . . 11 <Q ⊆ (Q × Q)
43brel 4715 . . . . . . . . . 10 (𝑥 <Q 𝑦 → (𝑥Q𝑦Q))
54simpld 112 . . . . . . . . 9 (𝑥 <Q 𝑦𝑥Q)
65adantr 276 . . . . . . . 8 ((𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) → 𝑥Q)
76exlimiv 1612 . . . . . . 7 (∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) → 𝑥Q)
87abssi 3258 . . . . . 6 {𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))} ⊆ Q
9 nqex 7430 . . . . . . 7 Q ∈ V
109elpw2 4190 . . . . . 6 ({𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))} ∈ 𝒫 Q ↔ {𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))} ⊆ Q)
118, 10mpbir 146 . . . . 5 {𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))} ∈ 𝒫 Q
123brel 4715 . . . . . . . . . 10 (𝑦 <Q 𝑥 → (𝑦Q𝑥Q))
1312simprd 114 . . . . . . . . 9 (𝑦 <Q 𝑥𝑥Q)
1413adantr 276 . . . . . . . 8 ((𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴)) → 𝑥Q)
1514exlimiv 1612 . . . . . . 7 (∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴)) → 𝑥Q)
1615abssi 3258 . . . . . 6 {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))} ⊆ Q
179elpw2 4190 . . . . . 6 ({𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))} ∈ 𝒫 Q ↔ {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))} ⊆ Q)
1816, 17mpbir 146 . . . . 5 {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))} ∈ 𝒫 Q
19 opelxpi 4695 . . . . 5 (({𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))} ∈ 𝒫 Q ∧ {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))} ∈ 𝒫 Q) → ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩ ∈ (𝒫 Q × 𝒫 Q))
2011, 18, 19mp2an 426 . . . 4 ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩ ∈ (𝒫 Q × 𝒫 Q)
211, 20eqeltri 2269 . . 3 𝐵 ∈ (𝒫 Q × 𝒫 Q)
222, 21jctil 312 . 2 (𝐴P → (𝐵 ∈ (𝒫 Q × 𝒫 Q) ∧ (∃𝑞Q 𝑞 ∈ (1st𝐵) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐵))))
231recexprlemrnd 7696 . . 3 (𝐴P → (∀𝑞Q (𝑞 ∈ (1st𝐵) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐵))) ∧ ∀𝑟Q (𝑟 ∈ (2nd𝐵) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵)))))
241recexprlemdisj 7697 . . 3 (𝐴P → ∀𝑞Q ¬ (𝑞 ∈ (1st𝐵) ∧ 𝑞 ∈ (2nd𝐵)))
251recexprlemloc 7698 . . 3 (𝐴P → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st𝐵) ∨ 𝑟 ∈ (2nd𝐵))))
2623, 24, 253jca 1179 . 2 (𝐴P → ((∀𝑞Q (𝑞 ∈ (1st𝐵) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐵))) ∧ ∀𝑟Q (𝑟 ∈ (2nd𝐵) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵)))) ∧ ∀𝑞Q ¬ (𝑞 ∈ (1st𝐵) ∧ 𝑞 ∈ (2nd𝐵)) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st𝐵) ∨ 𝑟 ∈ (2nd𝐵)))))
27 elnp1st2nd 7543 . 2 (𝐵P ↔ ((𝐵 ∈ (𝒫 Q × 𝒫 Q) ∧ (∃𝑞Q 𝑞 ∈ (1st𝐵) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐵))) ∧ ((∀𝑞Q (𝑞 ∈ (1st𝐵) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐵))) ∧ ∀𝑟Q (𝑟 ∈ (2nd𝐵) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵)))) ∧ ∀𝑞Q ¬ (𝑞 ∈ (1st𝐵) ∧ 𝑞 ∈ (2nd𝐵)) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st𝐵) ∨ 𝑟 ∈ (2nd𝐵))))))
2822, 26, 27sylanbrc 417 1 (𝐴P𝐵P)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  w3a 980   = wceq 1364  wex 1506  wcel 2167  {cab 2182  wral 2475  wrex 2476  wss 3157  𝒫 cpw 3605  cop 3625   class class class wbr 4033   × cxp 4661  cfv 5258  1st c1st 6196  2nd c2nd 6197  Qcnq 7347  *Qcrq 7351   <Q cltq 7352  Pcnp 7358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-eprel 4324  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-1o 6474  df-oadd 6478  df-omul 6479  df-er 6592  df-ec 6594  df-qs 6598  df-ni 7371  df-pli 7372  df-mi 7373  df-lti 7374  df-plpq 7411  df-mpq 7412  df-enq 7414  df-nqqs 7415  df-plqqs 7416  df-mqqs 7417  df-1nqqs 7418  df-rq 7419  df-ltnqqs 7420  df-inp 7533
This theorem is referenced by:  recexprlem1ssl  7700  recexprlem1ssu  7701  recexprlemss1l  7702  recexprlemss1u  7703  recexprlemex  7704  recexpr  7705
  Copyright terms: Public domain W3C validator