Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemcl GIF version

Theorem caucvgprprlemcl 7505
 Description: Lemma for caucvgprpr 7513. The putative limit is a positive real. (Contributed by Jim Kingdon, 21-Nov-2020.)
Hypotheses
Ref Expression
caucvgprpr.f (𝜑𝐹:NP)
caucvgprpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))
caucvgprpr.bnd (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))
caucvgprpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
Assertion
Ref Expression
caucvgprprlemcl (𝜑𝐿P)
Distinct variable groups:   𝐴,𝑚   𝑚,𝐹   𝐴,𝑟   𝐹,𝑙,𝑢,𝑟,𝑘   𝑛,𝐹,𝑘   𝑘,𝐿   𝜑,𝑟   𝑢,𝑙,𝑝,𝑞,𝑟   𝑚,𝑟   𝑘,𝑝,𝑞,𝑟   𝑢,𝑛,𝑙,𝑘
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑚,𝑛,𝑞,𝑝,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑞,𝑝,𝑙)   𝐹(𝑞,𝑝)   𝐿(𝑢,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem caucvgprprlemcl
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgprpr.f . . . 4 (𝜑𝐹:NP)
2 caucvgprpr.cau . . . 4 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))
3 caucvgprpr.bnd . . . 4 (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))
4 caucvgprpr.lim . . . 4 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
51, 2, 3, 4caucvgprprlemm 7497 . . 3 (𝜑 → (∃𝑠Q 𝑠 ∈ (1st𝐿) ∧ ∃𝑡Q 𝑡 ∈ (2nd𝐿)))
6 ssrab2 3177 . . . . . 6 {𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)} ⊆ Q
7 nqex 7164 . . . . . . 7 Q ∈ V
87elpw2 4077 . . . . . 6 ({𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)} ∈ 𝒫 Q ↔ {𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)} ⊆ Q)
96, 8mpbir 145 . . . . 5 {𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)} ∈ 𝒫 Q
10 ssrab2 3177 . . . . . 6 {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩} ⊆ Q
117elpw2 4077 . . . . . 6 ({𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩} ∈ 𝒫 Q ↔ {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩} ⊆ Q)
1210, 11mpbir 145 . . . . 5 {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩} ∈ 𝒫 Q
13 opelxpi 4566 . . . . 5 (({𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)} ∈ 𝒫 Q ∧ {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩} ∈ 𝒫 Q) → ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩ ∈ (𝒫 Q × 𝒫 Q))
149, 12, 13mp2an 422 . . . 4 ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩ ∈ (𝒫 Q × 𝒫 Q)
154, 14eqeltri 2210 . . 3 𝐿 ∈ (𝒫 Q × 𝒫 Q)
165, 15jctil 310 . 2 (𝜑 → (𝐿 ∈ (𝒫 Q × 𝒫 Q) ∧ (∃𝑠Q 𝑠 ∈ (1st𝐿) ∧ ∃𝑡Q 𝑡 ∈ (2nd𝐿))))
171, 2, 3, 4caucvgprprlemrnd 7502 . . 3 (𝜑 → (∀𝑠Q (𝑠 ∈ (1st𝐿) ↔ ∃𝑡Q (𝑠 <Q 𝑡𝑡 ∈ (1st𝐿))) ∧ ∀𝑡Q (𝑡 ∈ (2nd𝐿) ↔ ∃𝑠Q (𝑠 <Q 𝑡𝑠 ∈ (2nd𝐿)))))
181, 2, 3, 4caucvgprprlemdisj 7503 . . 3 (𝜑 → ∀𝑠Q ¬ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)))
191, 2, 3, 4caucvgprprlemloc 7504 . . 3 (𝜑 → ∀𝑠Q𝑡Q (𝑠 <Q 𝑡 → (𝑠 ∈ (1st𝐿) ∨ 𝑡 ∈ (2nd𝐿))))
2017, 18, 193jca 1161 . 2 (𝜑 → ((∀𝑠Q (𝑠 ∈ (1st𝐿) ↔ ∃𝑡Q (𝑠 <Q 𝑡𝑡 ∈ (1st𝐿))) ∧ ∀𝑡Q (𝑡 ∈ (2nd𝐿) ↔ ∃𝑠Q (𝑠 <Q 𝑡𝑠 ∈ (2nd𝐿)))) ∧ ∀𝑠Q ¬ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)) ∧ ∀𝑠Q𝑡Q (𝑠 <Q 𝑡 → (𝑠 ∈ (1st𝐿) ∨ 𝑡 ∈ (2nd𝐿)))))
21 elnp1st2nd 7277 . 2 (𝐿P ↔ ((𝐿 ∈ (𝒫 Q × 𝒫 Q) ∧ (∃𝑠Q 𝑠 ∈ (1st𝐿) ∧ ∃𝑡Q 𝑡 ∈ (2nd𝐿))) ∧ ((∀𝑠Q (𝑠 ∈ (1st𝐿) ↔ ∃𝑡Q (𝑠 <Q 𝑡𝑡 ∈ (1st𝐿))) ∧ ∀𝑡Q (𝑡 ∈ (2nd𝐿) ↔ ∃𝑠Q (𝑠 <Q 𝑡𝑠 ∈ (2nd𝐿)))) ∧ ∀𝑠Q ¬ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)) ∧ ∀𝑠Q𝑡Q (𝑠 <Q 𝑡 → (𝑠 ∈ (1st𝐿) ∨ 𝑡 ∈ (2nd𝐿))))))
2216, 20, 21sylanbrc 413 1 (𝜑𝐿P)
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 103   ↔ wb 104   ∨ wo 697   ∧ w3a 962   = wceq 1331   ∈ wcel 1480  {cab 2123  ∀wral 2414  ∃wrex 2415  {crab 2418   ⊆ wss 3066  𝒫 cpw 3505  ⟨cop 3525   class class class wbr 3924   × cxp 4532  ⟶wf 5114  ‘cfv 5118  (class class class)co 5767  1st c1st 6029  2nd c2nd 6030  1oc1o 6299  [cec 6420  Ncnpi 7073
 Copyright terms: Public domain W3C validator