ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1eq1 GIF version

Theorem f1eq1 5330
Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997.)
Assertion
Ref Expression
f1eq1 (𝐹 = 𝐺 → (𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵))

Proof of Theorem f1eq1
StepHypRef Expression
1 feq1 5262 . . 3 (𝐹 = 𝐺 → (𝐹:𝐴𝐵𝐺:𝐴𝐵))
2 cnveq 4720 . . . 4 (𝐹 = 𝐺𝐹 = 𝐺)
32funeqd 5152 . . 3 (𝐹 = 𝐺 → (Fun 𝐹 ↔ Fun 𝐺))
41, 3anbi12d 465 . 2 (𝐹 = 𝐺 → ((𝐹:𝐴𝐵 ∧ Fun 𝐹) ↔ (𝐺:𝐴𝐵 ∧ Fun 𝐺)))
5 df-f1 5135 . 2 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ Fun 𝐹))
6 df-f1 5135 . 2 (𝐺:𝐴1-1𝐵 ↔ (𝐺:𝐴𝐵 ∧ Fun 𝐺))
74, 5, 63bitr4g 222 1 (𝐹 = 𝐺 → (𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1332  ccnv 4545  Fun wfun 5124  wf 5126  1-1wf1 5127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-v 2691  df-un 3079  df-in 3081  df-ss 3088  df-sn 3537  df-pr 3538  df-op 3540  df-br 3937  df-opab 3997  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-fun 5132  df-fn 5133  df-f 5134  df-f1 5135
This theorem is referenced by:  f1oeq1  5363  f1eq123d  5367  fun11iun  5395  fo00  5410  tposf12  6173  f1dom2g  6657  f1domg  6659  dom3d  6675  domtr  6686  djudom  6985  difinfsn  6992  djudoml  7091  djudomr  7092
  Copyright terms: Public domain W3C validator