ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1eq1 GIF version

Theorem f1eq1 5470
Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997.)
Assertion
Ref Expression
f1eq1 (𝐹 = 𝐺 → (𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵))

Proof of Theorem f1eq1
StepHypRef Expression
1 feq1 5402 . . 3 (𝐹 = 𝐺 → (𝐹:𝐴𝐵𝐺:𝐴𝐵))
2 cnveq 4850 . . . 4 (𝐹 = 𝐺𝐹 = 𝐺)
32funeqd 5290 . . 3 (𝐹 = 𝐺 → (Fun 𝐹 ↔ Fun 𝐺))
41, 3anbi12d 473 . 2 (𝐹 = 𝐺 → ((𝐹:𝐴𝐵 ∧ Fun 𝐹) ↔ (𝐺:𝐴𝐵 ∧ Fun 𝐺)))
5 df-f1 5273 . 2 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ Fun 𝐹))
6 df-f1 5273 . 2 (𝐺:𝐴1-1𝐵 ↔ (𝐺:𝐴𝐵 ∧ Fun 𝐺))
74, 5, 63bitr4g 223 1 (𝐹 = 𝐺 → (𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1372  ccnv 4672  Fun wfun 5262  wf 5264  1-1wf1 5265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273
This theorem is referenced by:  f1oeq1  5504  f1eq123d  5508  fun11iun  5537  fo00  5552  tposf12  6345  f1dom2g  6833  f1domg  6835  dom3d  6851  domtr  6862  djudom  7177  difinfsn  7184  djudoml  7313  djudomr  7314  4sqlem11  12643  nninfdc  12743  conjsubgen  13532
  Copyright terms: Public domain W3C validator