ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1eq1 GIF version

Theorem f1eq1 5435
Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997.)
Assertion
Ref Expression
f1eq1 (𝐹 = 𝐺 → (𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵))

Proof of Theorem f1eq1
StepHypRef Expression
1 feq1 5367 . . 3 (𝐹 = 𝐺 → (𝐹:𝐴𝐵𝐺:𝐴𝐵))
2 cnveq 4819 . . . 4 (𝐹 = 𝐺𝐹 = 𝐺)
32funeqd 5257 . . 3 (𝐹 = 𝐺 → (Fun 𝐹 ↔ Fun 𝐺))
41, 3anbi12d 473 . 2 (𝐹 = 𝐺 → ((𝐹:𝐴𝐵 ∧ Fun 𝐹) ↔ (𝐺:𝐴𝐵 ∧ Fun 𝐺)))
5 df-f1 5240 . 2 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ Fun 𝐹))
6 df-f1 5240 . 2 (𝐺:𝐴1-1𝐵 ↔ (𝐺:𝐴𝐵 ∧ Fun 𝐺))
74, 5, 63bitr4g 223 1 (𝐹 = 𝐺 → (𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  ccnv 4643  Fun wfun 5229  wf 5231  1-1wf1 5232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-sn 3613  df-pr 3614  df-op 3616  df-br 4019  df-opab 4080  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240
This theorem is referenced by:  f1oeq1  5468  f1eq123d  5472  fun11iun  5501  fo00  5516  tposf12  6295  f1dom2g  6783  f1domg  6785  dom3d  6801  domtr  6812  djudom  7123  difinfsn  7130  djudoml  7249  djudomr  7250  4sqlem11  12436  nninfdc  12507  conjsubgen  13234
  Copyright terms: Public domain W3C validator