ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1eq1 GIF version

Theorem f1eq1 5454
Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997.)
Assertion
Ref Expression
f1eq1 (𝐹 = 𝐺 → (𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵))

Proof of Theorem f1eq1
StepHypRef Expression
1 feq1 5386 . . 3 (𝐹 = 𝐺 → (𝐹:𝐴𝐵𝐺:𝐴𝐵))
2 cnveq 4836 . . . 4 (𝐹 = 𝐺𝐹 = 𝐺)
32funeqd 5276 . . 3 (𝐹 = 𝐺 → (Fun 𝐹 ↔ Fun 𝐺))
41, 3anbi12d 473 . 2 (𝐹 = 𝐺 → ((𝐹:𝐴𝐵 ∧ Fun 𝐹) ↔ (𝐺:𝐴𝐵 ∧ Fun 𝐺)))
5 df-f1 5259 . 2 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ Fun 𝐹))
6 df-f1 5259 . 2 (𝐺:𝐴1-1𝐵 ↔ (𝐺:𝐴𝐵 ∧ Fun 𝐺))
74, 5, 63bitr4g 223 1 (𝐹 = 𝐺 → (𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  ccnv 4658  Fun wfun 5248  wf 5250  1-1wf1 5251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259
This theorem is referenced by:  f1oeq1  5488  f1eq123d  5492  fun11iun  5521  fo00  5536  tposf12  6322  f1dom2g  6810  f1domg  6812  dom3d  6828  domtr  6839  djudom  7152  difinfsn  7159  djudoml  7279  djudomr  7280  4sqlem11  12539  nninfdc  12610  conjsubgen  13348
  Copyright terms: Public domain W3C validator