ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funeqi GIF version

Theorem funeqi 5311
Description: Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypothesis
Ref Expression
funeqi.1 𝐴 = 𝐵
Assertion
Ref Expression
funeqi (Fun 𝐴 ↔ Fun 𝐵)

Proof of Theorem funeqi
StepHypRef Expression
1 funeqi.1 . 2 𝐴 = 𝐵
2 funeq 5310 . 2 (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵))
31, 2ax-mp 5 1 (Fun 𝐴 ↔ Fun 𝐵)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1373  Fun wfun 5284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-in 3180  df-ss 3187  df-br 4060  df-opab 4122  df-rel 4700  df-cnv 4701  df-co 4702  df-fun 5292
This theorem is referenced by:  funmpt  5328  funmpt2  5329  fununfun  5336  funprg  5343  funtpg  5344  funtp  5346  funcnvuni  5362  f1cnvcnv  5514  f1co  5515  fun11iun  5565  f10  5578  funopdmsn  5787  funoprabg  6067  mpofun  6070  ovidig  6086  tposfun  6369  tfri1dALT  6460  tfrcl  6473  rdgfun  6482  frecfun  6504  frecfcllem  6513  th3qcor  6749  ssdomg  6893  sbthlem7  7091  sbthlemi8  7092  casefun  7213  caseinj  7217  djufun  7232  djuinj  7234  ctssdccl  7239  axaddf  8016  axmulf  8017  fundm2domnop0  11027  strleund  13050  strleun  13051  1strbas  13064  2strbasg  13067  2stropg  13068  lidlmex  14352
  Copyright terms: Public domain W3C validator