| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funeqi | GIF version | ||
| Description: Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| funeqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| funeqi | ⊢ (Fun 𝐴 ↔ Fun 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funeqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | funeq 5310 | . 2 ⊢ (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (Fun 𝐴 ↔ Fun 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1373 Fun wfun 5284 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-in 3180 df-ss 3187 df-br 4060 df-opab 4122 df-rel 4700 df-cnv 4701 df-co 4702 df-fun 5292 |
| This theorem is referenced by: funmpt 5328 funmpt2 5329 fununfun 5336 funprg 5343 funtpg 5344 funtp 5346 funcnvuni 5362 f1cnvcnv 5514 f1co 5515 fun11iun 5565 f10 5578 funopdmsn 5787 funoprabg 6067 mpofun 6070 ovidig 6086 tposfun 6369 tfri1dALT 6460 tfrcl 6473 rdgfun 6482 frecfun 6504 frecfcllem 6513 th3qcor 6749 ssdomg 6893 sbthlem7 7091 sbthlemi8 7092 casefun 7213 caseinj 7217 djufun 7232 djuinj 7234 ctssdccl 7239 axaddf 8016 axmulf 8017 fundm2domnop0 11027 strleund 13050 strleun 13051 1strbas 13064 2strbasg 13067 2stropg 13068 lidlmex 14352 |
| Copyright terms: Public domain | W3C validator |