![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > funeqi | GIF version |
Description: Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
funeqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
funeqi | ⊢ (Fun 𝐴 ↔ Fun 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funeqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | funeq 5238 | . 2 ⊢ (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (Fun 𝐴 ↔ Fun 𝐵) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1353 Fun wfun 5212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-in 3137 df-ss 3144 df-br 4006 df-opab 4067 df-rel 4635 df-cnv 4636 df-co 4637 df-fun 5220 |
This theorem is referenced by: funmpt 5256 funmpt2 5257 funprg 5268 funtpg 5269 funtp 5271 funcnvuni 5287 f1cnvcnv 5434 f1co 5435 fun11iun 5484 f10 5497 funoprabg 5977 mpofun 5980 ovidig 5995 tposfun 6264 tfri1dALT 6355 tfrcl 6368 rdgfun 6377 frecfun 6399 frecfcllem 6408 th3qcor 6642 ssdomg 6781 sbthlem7 6965 sbthlemi8 6966 casefun 7087 caseinj 7091 djufun 7106 djuinj 7108 ctssdccl 7113 axaddf 7870 axmulf 7871 strleund 12565 strleun 12566 1strbas 12579 2strbasg 12581 2stropg 12582 lidlmex 13564 |
Copyright terms: Public domain | W3C validator |