| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funeqi | GIF version | ||
| Description: Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| funeqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| funeqi | ⊢ (Fun 𝐴 ↔ Fun 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funeqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | funeq 5279 | . 2 ⊢ (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (Fun 𝐴 ↔ Fun 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1364 Fun wfun 5253 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-in 3163 df-ss 3170 df-br 4035 df-opab 4096 df-rel 4671 df-cnv 4672 df-co 4673 df-fun 5261 |
| This theorem is referenced by: funmpt 5297 funmpt2 5298 funprg 5309 funtpg 5310 funtp 5312 funcnvuni 5328 f1cnvcnv 5477 f1co 5478 fun11iun 5528 f10 5541 funoprabg 6025 mpofun 6028 ovidig 6044 tposfun 6327 tfri1dALT 6418 tfrcl 6431 rdgfun 6440 frecfun 6462 frecfcllem 6471 th3qcor 6707 ssdomg 6846 sbthlem7 7038 sbthlemi8 7039 casefun 7160 caseinj 7164 djufun 7179 djuinj 7181 ctssdccl 7186 axaddf 7952 axmulf 7953 strleund 12806 strleun 12807 1strbas 12820 2strbasg 12822 2stropg 12823 lidlmex 14107 |
| Copyright terms: Public domain | W3C validator |