ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funeqi GIF version

Theorem funeqi 5239
Description: Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypothesis
Ref Expression
funeqi.1 𝐴 = 𝐵
Assertion
Ref Expression
funeqi (Fun 𝐴 ↔ Fun 𝐵)

Proof of Theorem funeqi
StepHypRef Expression
1 funeqi.1 . 2 𝐴 = 𝐵
2 funeq 5238 . 2 (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵))
31, 2ax-mp 5 1 (Fun 𝐴 ↔ Fun 𝐵)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1353  Fun wfun 5212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-in 3137  df-ss 3144  df-br 4006  df-opab 4067  df-rel 4635  df-cnv 4636  df-co 4637  df-fun 5220
This theorem is referenced by:  funmpt  5256  funmpt2  5257  funprg  5268  funtpg  5269  funtp  5271  funcnvuni  5287  f1cnvcnv  5434  f1co  5435  fun11iun  5484  f10  5497  funoprabg  5977  mpofun  5980  ovidig  5995  tposfun  6264  tfri1dALT  6355  tfrcl  6368  rdgfun  6377  frecfun  6399  frecfcllem  6408  th3qcor  6642  ssdomg  6781  sbthlem7  6965  sbthlemi8  6966  casefun  7087  caseinj  7091  djufun  7106  djuinj  7108  ctssdccl  7113  axaddf  7870  axmulf  7871  strleund  12565  strleun  12566  1strbas  12579  2strbasg  12581  2stropg  12582  lidlmex  13564
  Copyright terms: Public domain W3C validator