![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > funeqi | GIF version |
Description: Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
funeqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
funeqi | ⊢ (Fun 𝐴 ↔ Fun 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funeqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | funeq 5274 | . 2 ⊢ (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (Fun 𝐴 ↔ Fun 𝐵) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1364 Fun wfun 5248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-in 3159 df-ss 3166 df-br 4030 df-opab 4091 df-rel 4666 df-cnv 4667 df-co 4668 df-fun 5256 |
This theorem is referenced by: funmpt 5292 funmpt2 5293 funprg 5304 funtpg 5305 funtp 5307 funcnvuni 5323 f1cnvcnv 5470 f1co 5471 fun11iun 5521 f10 5534 funoprabg 6017 mpofun 6020 ovidig 6036 tposfun 6313 tfri1dALT 6404 tfrcl 6417 rdgfun 6426 frecfun 6448 frecfcllem 6457 th3qcor 6693 ssdomg 6832 sbthlem7 7022 sbthlemi8 7023 casefun 7144 caseinj 7148 djufun 7163 djuinj 7165 ctssdccl 7170 axaddf 7928 axmulf 7929 strleund 12721 strleun 12722 1strbas 12735 2strbasg 12737 2stropg 12738 lidlmex 13971 |
Copyright terms: Public domain | W3C validator |