| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funeqi | GIF version | ||
| Description: Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| funeqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| funeqi | ⊢ (Fun 𝐴 ↔ Fun 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funeqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | funeq 5291 | . 2 ⊢ (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (Fun 𝐴 ↔ Fun 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1373 Fun wfun 5265 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-in 3172 df-ss 3179 df-br 4045 df-opab 4106 df-rel 4682 df-cnv 4683 df-co 4684 df-fun 5273 |
| This theorem is referenced by: funmpt 5309 funmpt2 5310 fununfun 5317 funprg 5324 funtpg 5325 funtp 5327 funcnvuni 5343 f1cnvcnv 5492 f1co 5493 fun11iun 5543 f10 5556 funopdmsn 5764 funoprabg 6044 mpofun 6047 ovidig 6063 tposfun 6346 tfri1dALT 6437 tfrcl 6450 rdgfun 6459 frecfun 6481 frecfcllem 6490 th3qcor 6726 ssdomg 6870 sbthlem7 7065 sbthlemi8 7066 casefun 7187 caseinj 7191 djufun 7206 djuinj 7208 ctssdccl 7213 axaddf 7981 axmulf 7982 fundm2domnop0 10990 strleund 12935 strleun 12936 1strbas 12949 2strbasg 12952 2stropg 12953 lidlmex 14237 |
| Copyright terms: Public domain | W3C validator |