ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funeqi GIF version

Theorem funeqi 5238
Description: Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypothesis
Ref Expression
funeqi.1 𝐴 = 𝐵
Assertion
Ref Expression
funeqi (Fun 𝐴 ↔ Fun 𝐵)

Proof of Theorem funeqi
StepHypRef Expression
1 funeqi.1 . 2 𝐴 = 𝐵
2 funeq 5237 . 2 (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵))
31, 2ax-mp 5 1 (Fun 𝐴 ↔ Fun 𝐵)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1353  Fun wfun 5211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-in 3136  df-ss 3143  df-br 4005  df-opab 4066  df-rel 4634  df-cnv 4635  df-co 4636  df-fun 5219
This theorem is referenced by:  funmpt  5255  funmpt2  5256  funprg  5267  funtpg  5268  funtp  5270  funcnvuni  5286  f1cnvcnv  5433  f1co  5434  fun11iun  5483  f10  5496  funoprabg  5974  mpofun  5977  ovidig  5992  tposfun  6261  tfri1dALT  6352  tfrcl  6365  rdgfun  6374  frecfun  6396  frecfcllem  6405  th3qcor  6639  ssdomg  6778  sbthlem7  6962  sbthlemi8  6963  casefun  7084  caseinj  7088  djufun  7103  djuinj  7105  ctssdccl  7110  axaddf  7867  axmulf  7868  strleund  12562  strleun  12563  1strbas  12576  2strbasg  12578  2stropg  12579
  Copyright terms: Public domain W3C validator