| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funeqi | GIF version | ||
| Description: Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| funeqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| funeqi | ⊢ (Fun 𝐴 ↔ Fun 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funeqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | funeq 5290 | . 2 ⊢ (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (Fun 𝐴 ↔ Fun 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1372 Fun wfun 5264 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-in 3171 df-ss 3178 df-br 4044 df-opab 4105 df-rel 4681 df-cnv 4682 df-co 4683 df-fun 5272 |
| This theorem is referenced by: funmpt 5308 funmpt2 5309 fununfun 5316 funprg 5323 funtpg 5324 funtp 5326 funcnvuni 5342 f1cnvcnv 5491 f1co 5492 fun11iun 5542 f10 5555 funopdmsn 5763 funoprabg 6043 mpofun 6046 ovidig 6062 tposfun 6345 tfri1dALT 6436 tfrcl 6449 rdgfun 6458 frecfun 6480 frecfcllem 6489 th3qcor 6725 ssdomg 6869 sbthlem7 7064 sbthlemi8 7065 casefun 7186 caseinj 7190 djufun 7205 djuinj 7207 ctssdccl 7212 axaddf 7980 axmulf 7981 fundm2domnop0 10988 strleund 12906 strleun 12907 1strbas 12920 2strbasg 12923 2stropg 12924 lidlmex 14208 |
| Copyright terms: Public domain | W3C validator |