ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funeqi GIF version

Theorem funeqi 5209
Description: Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypothesis
Ref Expression
funeqi.1 𝐴 = 𝐵
Assertion
Ref Expression
funeqi (Fun 𝐴 ↔ Fun 𝐵)

Proof of Theorem funeqi
StepHypRef Expression
1 funeqi.1 . 2 𝐴 = 𝐵
2 funeq 5208 . 2 (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵))
31, 2ax-mp 5 1 (Fun 𝐴 ↔ Fun 𝐵)
Colors of variables: wff set class
Syntax hints:  wb 104   = wceq 1343  Fun wfun 5182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-in 3122  df-ss 3129  df-br 3983  df-opab 4044  df-rel 4611  df-cnv 4612  df-co 4613  df-fun 5190
This theorem is referenced by:  funmpt  5226  funmpt2  5227  funprg  5238  funtpg  5239  funtp  5241  funcnvuni  5257  f1cnvcnv  5404  f1co  5405  fun11iun  5453  f10  5466  funoprabg  5941  mpofun  5944  ovidig  5959  tposfun  6228  tfri1dALT  6319  tfrcl  6332  rdgfun  6341  frecfun  6363  frecfcllem  6372  th3qcor  6605  ssdomg  6744  sbthlem7  6928  sbthlemi8  6929  casefun  7050  caseinj  7054  djufun  7069  djuinj  7071  ctssdccl  7076  axaddf  7809  axmulf  7810  strleund  12483  strleun  12484  1strbas  12494  2strbasg  12496  2stropg  12497
  Copyright terms: Public domain W3C validator