Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > funeqi | GIF version |
Description: Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
funeqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
funeqi | ⊢ (Fun 𝐴 ↔ Fun 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funeqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | funeq 5208 | . 2 ⊢ (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (Fun 𝐴 ↔ Fun 𝐵) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1343 Fun wfun 5182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-in 3122 df-ss 3129 df-br 3983 df-opab 4044 df-rel 4611 df-cnv 4612 df-co 4613 df-fun 5190 |
This theorem is referenced by: funmpt 5226 funmpt2 5227 funprg 5238 funtpg 5239 funtp 5241 funcnvuni 5257 f1cnvcnv 5404 f1co 5405 fun11iun 5453 f10 5466 funoprabg 5941 mpofun 5944 ovidig 5959 tposfun 6228 tfri1dALT 6319 tfrcl 6332 rdgfun 6341 frecfun 6363 frecfcllem 6372 th3qcor 6605 ssdomg 6744 sbthlem7 6928 sbthlemi8 6929 casefun 7050 caseinj 7054 djufun 7069 djuinj 7071 ctssdccl 7076 axaddf 7809 axmulf 7810 strleund 12483 strleun 12484 1strbas 12494 2strbasg 12496 2stropg 12497 |
Copyright terms: Public domain | W3C validator |