ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funeqi GIF version

Theorem funeqi 5338
Description: Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypothesis
Ref Expression
funeqi.1 𝐴 = 𝐵
Assertion
Ref Expression
funeqi (Fun 𝐴 ↔ Fun 𝐵)

Proof of Theorem funeqi
StepHypRef Expression
1 funeqi.1 . 2 𝐴 = 𝐵
2 funeq 5337 . 2 (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵))
31, 2ax-mp 5 1 (Fun 𝐴 ↔ Fun 𝐵)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1395  Fun wfun 5311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-in 3203  df-ss 3210  df-br 4083  df-opab 4145  df-rel 4725  df-cnv 4726  df-co 4727  df-fun 5319
This theorem is referenced by:  funmpt  5355  funmpt2  5356  fununfun  5363  funprg  5370  funtpg  5371  funtp  5373  funcnvuni  5389  f1cnvcnv  5541  f1co  5542  fun11iun  5592  f10  5605  funopdmsn  5818  funoprabg  6102  mpofun  6105  ovidig  6121  tposfun  6404  tfri1dALT  6495  tfrcl  6508  rdgfun  6517  frecfun  6539  frecfcllem  6548  th3qcor  6784  ssdomg  6928  sbthlem7  7126  sbthlemi8  7127  casefun  7248  caseinj  7252  djufun  7267  djuinj  7269  ctssdccl  7274  axaddf  8051  axmulf  8052  fundm2domnop0  11062  strleund  13131  strleun  13132  1strbas  13145  2strbasg  13148  2stropg  13149  lidlmex  14433  usgredg3  16006  ushgredgedg  16018  ushgredgedgloop  16020
  Copyright terms: Public domain W3C validator