| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funeqi | GIF version | ||
| Description: Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| funeqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| funeqi | ⊢ (Fun 𝐴 ↔ Fun 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funeqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | funeq 5337 | . 2 ⊢ (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (Fun 𝐴 ↔ Fun 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1395 Fun wfun 5311 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-in 3203 df-ss 3210 df-br 4083 df-opab 4145 df-rel 4725 df-cnv 4726 df-co 4727 df-fun 5319 |
| This theorem is referenced by: funmpt 5355 funmpt2 5356 fununfun 5363 funprg 5370 funtpg 5371 funtp 5373 funcnvuni 5389 f1cnvcnv 5541 f1co 5542 fun11iun 5592 f10 5605 funopdmsn 5818 funoprabg 6102 mpofun 6105 ovidig 6121 tposfun 6404 tfri1dALT 6495 tfrcl 6508 rdgfun 6517 frecfun 6539 frecfcllem 6548 th3qcor 6784 ssdomg 6928 sbthlem7 7126 sbthlemi8 7127 casefun 7248 caseinj 7252 djufun 7267 djuinj 7269 ctssdccl 7274 axaddf 8051 axmulf 8052 fundm2domnop0 11062 strleund 13131 strleun 13132 1strbas 13145 2strbasg 13148 2stropg 13149 lidlmex 14433 usgredg3 16006 ushgredgedg 16018 ushgredgedgloop 16020 |
| Copyright terms: Public domain | W3C validator |