ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funeqi GIF version

Theorem funeqi 5280
Description: Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypothesis
Ref Expression
funeqi.1 𝐴 = 𝐵
Assertion
Ref Expression
funeqi (Fun 𝐴 ↔ Fun 𝐵)

Proof of Theorem funeqi
StepHypRef Expression
1 funeqi.1 . 2 𝐴 = 𝐵
2 funeq 5279 . 2 (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵))
31, 2ax-mp 5 1 (Fun 𝐴 ↔ Fun 𝐵)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1364  Fun wfun 5253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-in 3163  df-ss 3170  df-br 4035  df-opab 4096  df-rel 4671  df-cnv 4672  df-co 4673  df-fun 5261
This theorem is referenced by:  funmpt  5297  funmpt2  5298  funprg  5309  funtpg  5310  funtp  5312  funcnvuni  5328  f1cnvcnv  5477  f1co  5478  fun11iun  5528  f10  5541  funoprabg  6025  mpofun  6028  ovidig  6044  tposfun  6327  tfri1dALT  6418  tfrcl  6431  rdgfun  6440  frecfun  6462  frecfcllem  6471  th3qcor  6707  ssdomg  6846  sbthlem7  7038  sbthlemi8  7039  casefun  7160  caseinj  7164  djufun  7179  djuinj  7181  ctssdccl  7186  axaddf  7952  axmulf  7953  strleund  12806  strleun  12807  1strbas  12820  2strbasg  12822  2stropg  12823  lidlmex  14107
  Copyright terms: Public domain W3C validator