ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funeqi GIF version

Theorem funeqi 5292
Description: Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypothesis
Ref Expression
funeqi.1 𝐴 = 𝐵
Assertion
Ref Expression
funeqi (Fun 𝐴 ↔ Fun 𝐵)

Proof of Theorem funeqi
StepHypRef Expression
1 funeqi.1 . 2 𝐴 = 𝐵
2 funeq 5291 . 2 (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵))
31, 2ax-mp 5 1 (Fun 𝐴 ↔ Fun 𝐵)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1373  Fun wfun 5265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-in 3172  df-ss 3179  df-br 4045  df-opab 4106  df-rel 4682  df-cnv 4683  df-co 4684  df-fun 5273
This theorem is referenced by:  funmpt  5309  funmpt2  5310  fununfun  5317  funprg  5324  funtpg  5325  funtp  5327  funcnvuni  5343  f1cnvcnv  5492  f1co  5493  fun11iun  5543  f10  5556  funopdmsn  5764  funoprabg  6044  mpofun  6047  ovidig  6063  tposfun  6346  tfri1dALT  6437  tfrcl  6450  rdgfun  6459  frecfun  6481  frecfcllem  6490  th3qcor  6726  ssdomg  6870  sbthlem7  7065  sbthlemi8  7066  casefun  7187  caseinj  7191  djufun  7206  djuinj  7208  ctssdccl  7213  axaddf  7981  axmulf  7982  fundm2domnop0  10990  strleund  12935  strleun  12936  1strbas  12949  2strbasg  12952  2stropg  12953  lidlmex  14237
  Copyright terms: Public domain W3C validator