Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fundmeng | GIF version |
Description: A function is equinumerous to its domain. Exercise 4 of [Suppes] p. 98. (Contributed by NM, 17-Sep-2013.) |
Ref | Expression |
---|---|
fundmeng | ⊢ ((𝐹 ∈ 𝑉 ∧ Fun 𝐹) → dom 𝐹 ≈ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funeq 5218 | . . . 4 ⊢ (𝑥 = 𝐹 → (Fun 𝑥 ↔ Fun 𝐹)) | |
2 | dmeq 4811 | . . . . 5 ⊢ (𝑥 = 𝐹 → dom 𝑥 = dom 𝐹) | |
3 | id 19 | . . . . 5 ⊢ (𝑥 = 𝐹 → 𝑥 = 𝐹) | |
4 | 2, 3 | breq12d 4002 | . . . 4 ⊢ (𝑥 = 𝐹 → (dom 𝑥 ≈ 𝑥 ↔ dom 𝐹 ≈ 𝐹)) |
5 | 1, 4 | imbi12d 233 | . . 3 ⊢ (𝑥 = 𝐹 → ((Fun 𝑥 → dom 𝑥 ≈ 𝑥) ↔ (Fun 𝐹 → dom 𝐹 ≈ 𝐹))) |
6 | vex 2733 | . . . 4 ⊢ 𝑥 ∈ V | |
7 | 6 | fundmen 6784 | . . 3 ⊢ (Fun 𝑥 → dom 𝑥 ≈ 𝑥) |
8 | 5, 7 | vtoclg 2790 | . 2 ⊢ (𝐹 ∈ 𝑉 → (Fun 𝐹 → dom 𝐹 ≈ 𝐹)) |
9 | 8 | imp 123 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ Fun 𝐹) → dom 𝐹 ≈ 𝐹) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 class class class wbr 3989 dom cdm 4611 Fun wfun 5192 ≈ cen 6716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-en 6719 |
This theorem is referenced by: fndmeng 6788 fundmfi 6915 |
Copyright terms: Public domain | W3C validator |