ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fundmeng GIF version

Theorem fundmeng 6958
Description: A function is equinumerous to its domain. Exercise 4 of [Suppes] p. 98. (Contributed by NM, 17-Sep-2013.)
Assertion
Ref Expression
fundmeng ((𝐹𝑉 ∧ Fun 𝐹) → dom 𝐹𝐹)

Proof of Theorem fundmeng
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 funeq 5337 . . . 4 (𝑥 = 𝐹 → (Fun 𝑥 ↔ Fun 𝐹))
2 dmeq 4922 . . . . 5 (𝑥 = 𝐹 → dom 𝑥 = dom 𝐹)
3 id 19 . . . . 5 (𝑥 = 𝐹𝑥 = 𝐹)
42, 3breq12d 4095 . . . 4 (𝑥 = 𝐹 → (dom 𝑥𝑥 ↔ dom 𝐹𝐹))
51, 4imbi12d 234 . . 3 (𝑥 = 𝐹 → ((Fun 𝑥 → dom 𝑥𝑥) ↔ (Fun 𝐹 → dom 𝐹𝐹)))
6 vex 2802 . . . 4 𝑥 ∈ V
76fundmen 6957 . . 3 (Fun 𝑥 → dom 𝑥𝑥)
85, 7vtoclg 2861 . 2 (𝐹𝑉 → (Fun 𝐹 → dom 𝐹𝐹))
98imp 124 1 ((𝐹𝑉 ∧ Fun 𝐹) → dom 𝐹𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200   class class class wbr 4082  dom cdm 4718  Fun wfun 5311  cen 6883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-en 6886
This theorem is referenced by:  fndmeng  6961  fundmfi  7100  usgrsizedgen  16005
  Copyright terms: Public domain W3C validator