ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fundmeng GIF version

Theorem fundmeng 6785
Description: A function is equinumerous to its domain. Exercise 4 of [Suppes] p. 98. (Contributed by NM, 17-Sep-2013.)
Assertion
Ref Expression
fundmeng ((𝐹𝑉 ∧ Fun 𝐹) → dom 𝐹𝐹)

Proof of Theorem fundmeng
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 funeq 5218 . . . 4 (𝑥 = 𝐹 → (Fun 𝑥 ↔ Fun 𝐹))
2 dmeq 4811 . . . . 5 (𝑥 = 𝐹 → dom 𝑥 = dom 𝐹)
3 id 19 . . . . 5 (𝑥 = 𝐹𝑥 = 𝐹)
42, 3breq12d 4002 . . . 4 (𝑥 = 𝐹 → (dom 𝑥𝑥 ↔ dom 𝐹𝐹))
51, 4imbi12d 233 . . 3 (𝑥 = 𝐹 → ((Fun 𝑥 → dom 𝑥𝑥) ↔ (Fun 𝐹 → dom 𝐹𝐹)))
6 vex 2733 . . . 4 𝑥 ∈ V
76fundmen 6784 . . 3 (Fun 𝑥 → dom 𝑥𝑥)
85, 7vtoclg 2790 . 2 (𝐹𝑉 → (Fun 𝐹 → dom 𝐹𝐹))
98imp 123 1 ((𝐹𝑉 ∧ Fun 𝐹) → dom 𝐹𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141   class class class wbr 3989  dom cdm 4611  Fun wfun 5192  cen 6716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-en 6719
This theorem is referenced by:  fndmeng  6788  fundmfi  6915
  Copyright terms: Public domain W3C validator