ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovclg GIF version

Theorem caovclg 6071
Description: Convert an operation closure law to class notation. (Contributed by Mario Carneiro, 26-May-2014.)
Hypothesis
Ref Expression
caovclg.1 ((𝜑 ∧ (𝑥𝐶𝑦𝐷)) → (𝑥𝐹𝑦) ∈ 𝐸)
Assertion
Ref Expression
caovclg ((𝜑 ∧ (𝐴𝐶𝐵𝐷)) → (𝐴𝐹𝐵) ∈ 𝐸)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐸,𝑦   𝜑,𝑥,𝑦   𝑥,𝐹,𝑦
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem caovclg
StepHypRef Expression
1 caovclg.1 . . 3 ((𝜑 ∧ (𝑥𝐶𝑦𝐷)) → (𝑥𝐹𝑦) ∈ 𝐸)
21ralrimivva 2576 . 2 (𝜑 → ∀𝑥𝐶𝑦𝐷 (𝑥𝐹𝑦) ∈ 𝐸)
3 oveq1 5925 . . . 4 (𝑥 = 𝐴 → (𝑥𝐹𝑦) = (𝐴𝐹𝑦))
43eleq1d 2262 . . 3 (𝑥 = 𝐴 → ((𝑥𝐹𝑦) ∈ 𝐸 ↔ (𝐴𝐹𝑦) ∈ 𝐸))
5 oveq2 5926 . . . 4 (𝑦 = 𝐵 → (𝐴𝐹𝑦) = (𝐴𝐹𝐵))
65eleq1d 2262 . . 3 (𝑦 = 𝐵 → ((𝐴𝐹𝑦) ∈ 𝐸 ↔ (𝐴𝐹𝐵) ∈ 𝐸))
74, 6rspc2v 2877 . 2 ((𝐴𝐶𝐵𝐷) → (∀𝑥𝐶𝑦𝐷 (𝑥𝐹𝑦) ∈ 𝐸 → (𝐴𝐹𝐵) ∈ 𝐸))
82, 7mpan9 281 1 ((𝜑 ∧ (𝐴𝐶𝐵𝐷)) → (𝐴𝐹𝐵) ∈ 𝐸)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  wral 2472  (class class class)co 5918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-iota 5215  df-fv 5262  df-ov 5921
This theorem is referenced by:  caovcld  6072  caovcl  6073  caovlem2d  6111  frec2uzrdg  10480  frecuzrdgsuc  10485  iseqovex  10529  seq3val  10531  seqf  10535  seq3caopr  10566  seqcaoprg  10567  ercpbl  12914  grpinva  12969  imasgrp2  13180  imasrng  13452  imasring  13560  qusrhm  14024  qusmul2  14025  plymullem  14896
  Copyright terms: Public domain W3C validator